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In brief

Understanding how protein domains

impact cancer fitness is an ongoing

challenge in oncology. Here, Ford et al.

present a pooled screening methodology

utilizing lentiviral overexpression of

peptides comprehensively tiling cancer

driver genes. This strategy identified

bioactive domains and associated

interfering peptides. Coupling cell-

penetrating motifs to the peptides

enabled exogenous drug-like delivery of

these with dose-dependent anti-cancer

activity.
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SUMMARY

Gene fragments derived from structural domains mediating physical interactions can modulate biological
functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling
high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling
65 cancer drivers and 579mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed pep-
tides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for
cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides
derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27–63 mM. We anticipate that this peptide-
tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated
interfering peptides.

INTRODUCTION

Over the last decade, large-scale sequencing and functional

genomic screening efforts have identified high-confidence lists

of genes essential for cancer fitness. However, direct antagonism

of many of these genes (Ras GTPases, transcription factors, cy-

clins, etc.) has proven challenging due to their reliance on large

protein-protein interaction interfaces lacking a small molecule

binding pocket to mediate signaling. Still, previous studies have

demonstrated the feasibility of inhibiting hard to drug intracellular

protein-protein interactions via direct transduction of protein/pep-

tide therapeutics (Liu et al., 2010; Chang et al., 2013; Nim et al.,

2016; Beaulieu et al., 2019). However, identifying and engineering

protein/peptide therapeutics has classically relied on structure

guided testing of individually produced protein variants. This pro-

cess is time consuming and limited by the costs associated with

direct peptide synthesis and recombinant production. Further-

more, target discovery itself is hindered in this context by the chal-

lenge of identifying therapeutically actionable protein-protein

interaction interfaces. Subsequently, there is a compelling need

for new technologies to identify and inhibit oncogenic signaling in-

terfaces. With this in mind, here, we describe a modular oligonu-

cleotide synthesis and sequencing-based screening protocol to

identify bioactive peptides, which cause a slow growing pheno-

type, and corresponding protein-protein interaction domains

implicated in driving cancer proliferation.

High-throughput screening strategies to identify novel pro-

teins/peptides with a growth inhibition phenotype have been

previously explored, primarily in Saccharomyces cerevisiae.

These studies include novel approaches to assay computation-

ally defined C-terminal protein fragments (Nim et al., 2016),

randomly digested genomic fragments (Ramer et al., 1992;

Akada et al., 1997; Boyer et al., 2004), and, in a recent elegant

approach, transposon-mediated fragmentation and overexpres-

sion of gene fragments to identify inhibitors of essential proteins

in yeast (Dorrity et al., 2019). However, these libraries typically do

not comprehensively cover protein-protein interaction interface

regions for target proteins and often randomly generate gene

fragments of various lengths and frame, hindering control of li-

brary composition. Consequently, these studies have been

limited in their sensitivity, modularity, or ability to interrogate

translatable phenotypes (Ramer et al., 1992; Akada et al.,

1997; Boyer et al., 2004; Nim et al., 2016). As an alternative,

purely computational methods to identify peptide self-inhibitors

have been developed, but experimental screening is critical to

progressively improving underlying structure-function predic-

tions (London et al., 2010; Donsky and Wolfson, 2011; Zaidman

and Wolfson, 2016; Han and Král, 2020).

To address these issues, we integrated lentiviral screening

(Nim et al., 2016) and protein fragmentation (Dorrity et al.,

2019) with array-based custom oligonucleotide pools (Kosuri

and Church, 2014) to generate user-defined libraries of overex-

pressed peptide-coding gene fragments. We built our libraries

using the target proteins as a scaffold fromwhich to derive inhib-

itory sequences, synthesizing a comprehensive library of every

possible overlapping 40-mer peptide for each target protein.
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This strategy allows for modular library design, complete

coverage of protein-protein interaction interfaces, and is sup-

ported by extensive previous research showing that fragmented

or truncated proteins can function as inhibitors of the full-length

protein (Herskowitz, 1987; Ramer et al., 1992; Akada et al., 1997;

Barnard et al., 1998; Soucek et al., 2002; Boyer et al., 2004; Zhu

et al., 2016; Nim et al., 2016; Bai et al., 2017; Yu et al., 2017; Dorr-

ity et al., 2019). Furthermore, non-canonical translation of small

ORFs overlapping protein coding genes has been shown to

affect cell fitness, further supporting our strategy (Chen et al.,

2020). We assayed these overexpression libraries via lenti-

virus-mediated pooled screening in two disease-relevant cell

lines, interrogating over 65,000 peptides, tiling 65 cancer drivers

and 579 mutant alleles. In contrast to contemporary approaches

that employ libraries of genetically encoded functional perturba-

tions that are agnostic to mechanism (CRISPR-Cas9 sgRNA,

siRNA, etc.; Shalem et al., 2015; Doench, 2018; Ford et al.,

2019), our approach enables rapid unbiased mapping of bioac-

tive protein domains and associated interfering peptides.

RESULTS

Peptide-tiling-based map of protein domains implicated
in proliferation via MAPK signaling
We first synthesized a pilot peptide library of oncogenes and

associated effectors from the MAPK signaling pathways along

with a panel of tumor suppressors and negative controls (Figures

1, S1, and S2, Table S1). RAS and MYC are two of the most

frequently mutated/amplified oncogenes across a wide variety

of malignancies, highlighting the medical need to identify func-

tional inhibitors (Downward, 2003; Dang, 2012; Simanshu

et al., 2017). Compounding this, RAS and MYC have proven

challenging to drug via small molecules, due to their lack of a

binding pocket and reliance on protein-protein interactions for

signal transduction (Cox et al., 2014). Owing to their larger size

and ability to form complex folded structures, we surmised

that peptide biologics are likely suited to disrupting the pro-

tein-protein interactions through which RAS and MYC mediate

cellular proliferation (Craik et al., 2013).

For every target protein in our library, we synthesized gene

fragments via oligonucleotide pools coding for every possible

overlapping 40-mer peptide within the proteins primary struc-

ture. Testing every overlapping 40-mer improves statistical po-

wer and allows for sensitive discrimination of similar peptide mo-

tifs, minimizing the required downstream optimization of

inhibitors. To maximize the chance of identifying a peptide inhib-

itor of RAS or MYC signaling, we included gene fragments

derived from the downstream RAS effectors ARAF, BRAF, and

RAF1, as well as the negative regulator of MYC stability

FBXW7. FBXW7 was of special interest due to its role in regu-

lating the degradation of several other key oncogenes (Sato

et al., 2015; Yeh et al., 2018). In addition to gene fragments

derived from the wildtype (WT) RAS and MYC proteins, we

also included fragments derived from pathogenic Ras variants

that have been shown to have unique protein-protein interaction

networks (Adhikari and Counter, 2018). Furthermore, we

included gene fragments derived from EGFR (due to its role in

proliferation and oncogenic signal transduction to Ras proteins),

from the HRAS S17N dominant-negative and the MYC domi-

nant-negative Omomyc (Soucek et al., 2002; Nassar et al.,

2010). As negative controls, we included fragments derived

from the green fluorescent protein (GFP) and hypoxanthine(-

guanine) phosphoribosyltransferase (HPRT1) (Gasperini et al.,

2017). Finally, we included in the library two canonical tumor

suppressor genes TP53 and CDKN2A. After removing dupli-

cates, the final library consisted of 6,234 unique gene fragments,

spanning 14 full-length genes. The pooled library of gene frag-

ments was then synthesized as single-stranded oligonucleotides

and cloned into a lentiviral vector, with an EF1a-promoter-driving

gene fragment transcription (Figures 1A, S1A, and S2; Table S1;

STAR methods). An internal ribosomal entry site (IRES) was

placed after the gene fragment stop codon to allow for co-trans-

lation of a puromycin acetyltransferase gene. This allowed for se-

lection of transduced cells via the addition of puromycin to the

cell culture media.

The library was then packaged into lentiviral particles that

were used to transduce the MYC- and RAS-dependent

Hs578T and MDA-MB-231 cell lines in duplicate (Figure 1A;

STAR methods) (Eckert et al., 2004; Kang et al., 2014; Broad

Institute, 2019). Genomic DNA was isolated 3 days after trans-

duction, as well as 14 days after transduction to calculate pep-

tide-specific log2 fold changes. These peptide-specific log2
fold change values were then used to calculate an amino-acid-

level fitness score (Dorrity et al., 2019) via the mean of all frag-

ments that overlap a particular codon (Figures 1A, 1B, and

S1B–S1E; Table S2; STAR methods). The amino-acid-level

fitness score was first calculated by taking the mean log2 fold

change of all overlapping peptides. For every residue in the

Figure 1. Peptide overexpression screening strategy and MAPK focused library

(A) Design of overlapping peptide expression library. Gene fragments coding for all possible overlapping 40-mer peptides were computed from target gene cDNA

sequences. Peptide-coding sequences were then generated via chip-based oligonucleotide synthesis and cloned into a lentiviral plasmid vector. This plasmid

library was in turn used to generate lentiviral particles via transient transfection. The lentiviral particles were then used to infect target mammalian cell lines at a low

multiplicity of infection (MOI) to ensure only one peptide was expressed per cell. The cells were then grown for 2 weeks, with genomic DNA extracted at days 3

and 14. Next, peptide-coding gene fragments were PCR amplified from genomic DNA and sequenced to track peptide abundances and calculate log2
enrichment and depletion. Peptides weremapped back to target gene coding sequences, and each codon/amino acid was given a fitness score defined as the Z-

normalized mean log2 fold change of all overlapping peptides.

(B) Resulting amino-acid-level fitness scores. Screening data from Hs578T andMDA-MB-231 cells shows conserved regions of peptide depletion, as well as cell

line specific peptide depletion. The heatmap shows the fitness score for each amino acid position (sorted in ascending order from top to bottom) across all

proteins assayed in the screen. On the right, plots showing the statistical likelihood of depletion are shown for RAF1, EGFR, BRAF, and FBXW7. Peptides

overlapping amino acid positions with known functional roles are significantly depleted over the course of cell growth.

(C) The fitness effects of peptides derived from known pathogenic and dominant-negative Ras mutants. Peptides derived from KRASQ61K were significantly

depleted in both cell lines, while peptides derived from HRAS S17N is depleted only in HRAS mutant Hs578T cells (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.0001) (see also Figures S1 and S2).
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protein scaffolds, the mean log2 fold change values were then Z-

score-normalized to yield a relative fitness score. This fitness

score served as a way to map the results of individual peptides

back to the original protein structure. Based on this, 2.6%

(Hs578T) and 9.5% (MDA-MB-231) of residues tested had signif-

icantly depleted overlapping peptides, indicating that peptides

derived from these positions were collectively more deleterious

to cell fitness than a random sampling of peptides from the li-

brary (Figures S1D and S1E). There was good correlation be-

tween biological replicates, with the Hs578T and MDA-MB-231

amino acid scores having a Pearson correlation of 0.54 and

0.75, respectively.

In order to visualize protein motifs with a significant impact on

cell fitness, the amino acid scores were superimposed along the

primary amino acid sequence for each associated protein (Fig-

ure 1B). EGFR, BRAF, FBXW7, and RAF1 all had regions of sig-

nificant depletion in one or both of the cell lines, corresponding to

previously annotated protein function. Peptides derived from the

P-loop and alpha C-helix of EGFR were depleted across both

cell lines. The P-loop of EGFR is involved in ATP binding, while

the conformationally sensitive autoinhibitory C-helix plays a reg-

ulatory role in controlling EGFR enzymatic activity (Yun et al.,

2007; Ruan and Kannan, 2018). The EGFR alpha C-helix regu-

lates EGFR activation by dynamic orientation toward the ATP-

binding pocket (active state), or away from the ATP-binding

pocket (inactive state). Supporting a functional role for this

depleted EGFR domain in regulating cell fitness, this region of

the EGFR gene (exon 19) is frequently deleted in cancer,

comprising approximately 44% of activating EGFR mutations

seen clinically (Kumar et al., 2008). Maintaining an active EGFR

structural state critically depends on the positioning of the alpha

C-helix structure, suggesting that overexpressed alpha-C-helix-

derived peptides may be active participants in allosteric EGFR

regulation. However, because alpha-C-helix motifs are ubiqui-

tous in regulating kinase activity (Palmieri and Rastelli, 2013), ho-

mologous protein motifs on other structures may also be impli-

cated in mediating EGFR-derived peptide bioactivity.

The Ras-binding domain (RBD) of RAF1 was also significantly

depleted across both cell lines, presumably due to the peptides

binding endogenous Ras proteins within the cell. This result is

supported by previous research showing that chemically synthe-

sized and recombinant RAF1 RBD mini proteins can bind Ras

proteins with nanomolar affinity (Clark et al., 1996; Barnard

et al., 1998; Becker et al., 2003). Ras-targeting peptides derived

from RAF1 have also been shown to block oncogenic signaling,

lending further credence to this hypothesis. While the RAF1

cysteine-rich domain (AA 139 to 184) has also been previously

identified as a KRAS binder, this region does not correspond

to significant peptide depletion in either breast cancer cell line.

This result is potentially due to the orders of magnitude lower

binding affinity of the cysteine-rich domain compared with the

RBD (micromolar versus nanomolar affinity) (Williams

et al., 2000).

FBXW7 had a broad region of depletion corresponding to WD

repeats 1–6. Knockout screening via CRISPR-Cas9 has shown

that FBXW7 is not essential in Hs578T or MDA-MB-231 cells,

meaning it is unlikely that this depletion is due to direct inhibition

of FBXW7 (Broad Institute, 2019). The WD repeats in FBXW7

mediate substrate binding and subsequent recruitment to the

E3 ubiquitin-protein ligase complex, suggesting that the highly

depleted peptides are potentially interacting with one of the

endogenous partners of FBXW7 (Hao et al., 2007). BRAF also

had several significantly depleted regions dispersed across the

primary sequence including one corresponding to a previously

identified phospho-degron motif centered on amino acids 394–

405 (Eisenhardt et al., 2016).

Toward the broader goal of identifying peptide inhibitors of

KRAS function, we tested if peptides derived from pathogenic

variants could function as more effective anti-proliferative pro-

teins than their WT counterparts (Figure 1C). The 40-mer pep-

tides derived from KRAS Q61K were significantly depleted

across both cell lines, while WT peptides overlapping amino

acid showed no effect on cell fitness. The full-length Q61K

mutant is highly transforming because of a modified Ras/Raf

interaction, which may play a role in the anti-proliferative activity

of the Q61K derived fragments (Der et al., 1986; Buhrman et al.,

2007). Furthermore, peptides derived from the known HRAS

S17N dominant-negative mutant showed selective depletion

only in the mutant HRAS-driven Hs578T cell line, emphasizing

the ability of this technology to discriminate fitness depen-

dencies with a degree of specificity.

Large-scale peptide-tiling screens identify diverse
peptides and domains that perturb cell fitness
In order to mine anti-proliferative peptide motifs in a more sys-

tematic fashion we next synthesized a library of 43,441 peptides

(Figures 2A and S3A; Tables S1 and S3) derived from 65 key

oncogenic driver genes with a high prevalence in TCGA-

sequencing data (Bailey et al., 2018). This library covers ~20%

of all high-confidence cancer drivers identified in a recent

computational approach, allowing for a more comprehensive

characterization of potential oncogene-derived peptide inhibi-

tors of proliferation (Bailey et al., 2018). This expanded screen

was performed in MDA-MB-231 cells and identified nearly an or-

der of magnitude greater number of peptides with fitness defects

(as measured by log fold change), compared with those identi-

fied in the smaller pilot screen (Figure 2A). Building on this screen

of cancer drivers, we also built a library of peptides derived from

high-confidence cancer driver mutations identified via the Can-

cer Genome Atlas sequencing data (Bailey et al., 2018). This

screen interrogated 579mutant residues across 53 cancer driver

genes, via 22,724 peptide-coding gene fragments (Figures 2B

and S3B; Tables S1 and S4). Peptide names indicate the gene

from which the peptide was derived, and the first amino acid

they align to on the full-length structure.

We observed in most cases that mutant peptides had a similar

effect on cell fitness compared with their WT counterparts (Fig-

ure 2C). This can be rationalized by the high degree of sequence

homology (>97%) betweenWT peptides and single mutants. We

then quantified how peptide depletion in the screen relates to

bulk biophysical properties such as charge and hydrophobicity

(Figure 2D). We found that peptide effects on cell fitness were

not dependent on charge or hydrophobicity, indicating that high-

ly charged or highly hydrophobic peptides do not result in false-

positive cellular toxicities.

As in the pilot screen, we then sought to map peptides from

the library back to the primary structure of theWT protein to visu-

alize domains with a significant impact on cell fitness (Figures
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Figure 2. Expanded library screening enables more comprehensive evaluation of cancer driver derived peptides

(A) Plot of individual peptide enrichment/depletion for expanded screen. Peptides are centered around zero depletion, with a subpopulation being significantly

deleterious to cells when overexpressed genetically. Peptides with log2 fold change values less than �4.5 are labeled. Cancer driver genes were hand curated

from (Bailey et al., 2018) and (Santarius et al., 2010), with additional controls added from the pilot screen.

(legend continued on next page)
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2E–2G, S4A, and S4B). We first examined the pattern of deple-

tion for the transcription factor NFE2L2, the protein containing

the most deleterious domain as scored by this screen (Figures

S4C and 2E). Peptides derived from the DNA-binding domain,

as well as the KEAP1-binding domain of NFE2L2 were highly

depleted in the screen, consistent with the critical role these re-

gions play in mediating NFE2L2 function (Cuadrado et al., 2019).

NFE2L2 has been previously shown to support cellular prolifera-

tion and metastasis in MDA-MB-231 cells, supporting the

conclusion that peptide mediated disruption of NFE2L2 function

could be used to inhibit cell growth (Zhang et al., 2016). Neither

the negative control GFP protein or the tumor suppressor

CDKN2A showed significant depletion of any domain, high-

lighting the ability of this technology to discriminate bioactive

peptide motifs (Figure 2F). While the majority of mutant peptides

had similar fitness scores compared with WT peptides overlap-

ping the same residues, some mutants such as PIK3CA956F,

KRAS61K, and BRAF594N showed markedly more deleterious

effects on cell fitness (Figures 2G and S4E).

We next investigated the fitness of peptides derived from

MDM2. MDM2 is a negative regulator of TP53 function in the

cell, and inhibition of the MDM2-TP53 PPI has been shown to

effectively oppose cancer growth across a variety of malig-

nancies (Liu et al., 2010; Chang et al., 2013; Zhao et al., 2015).

In our screening data, peptides derived from the TP53-binding

domain of MDM2 were significantly depleted consistent with

previous reports that truncated MDM2 proteins containing only

the N terminus function as dominant negatives (Kubbutat et al.,

1999). However, interpreting the bioactivity of MDM2 derived

peptides is made challenging by the highly contextual MDM2

and TP53 biological functions. For example, MDA-MB-231 cells

contain a TP53 hotspot mutation (R280K) (Chavez et al., 2010)

obfuscating if putative TP53-binding peptides are activating

WT TP53 functions, or inhibiting oncogenic mutant TP53 func-

tions (Hui et al., 2006). Given the TP53-binding domain of

MDM2 occupies the transactivation domain of TP53, both hy-

potheses have a structural justification, highlighting the complex

role TP53 plays in cancer etiology (Iwakuma and Lozano, 2003).

We then sought to investigate the fitness effect of peptides

derived from PIK3CA. The PI3K-AKT-mTOR pathway is one of

the most frequently dysregulated pathways in cancer, and

PIK3CA plays a pivotal role in signal transduction along this

pathway (Janku et al., 2018). The most critical region impacting

cell fitness in PIK3CA corresponds to the adaptor-binding

domain of the protein. PIK3CA activity is modulated by the bind-

ing of various adaptor proteins encoded by genes such as

PIK3R1, PIK3R2, and PIK3R3. Supporting the hypothesis that

these peptides potentially inhibit proliferation via disruption of

the PIK3CA/PIK3R1-3 complex, the corresponding PIK3CA-

binding domain in PIK3R1 is also depleted. Additionally, the

RBD of PIK3CA was also significantly depleted in this screen,

implying Ras-PIK3CA cross-talk may impact cell fitness in

MDA-MB-231 cells.

Next, we plotted the depleted domains for the miRNA-pro-

cessing protein DICER1. Regions corresponding to binding sites

for known DICER1 cofactors TARBP and PRKRA were heavily

depleted, comprising some of the most deleterious peptides in

the screen (Figure S4D). However, DICER1 activity is predicated

not just on binding other proteins but also on binding RNA via

helicase, RNase, and dsRNA-binding domains present

throughout the protein structure(Gurtan et al., 2012). The delete-

rious nature of DICER1-derived peptides could therefore be

attributed to protein-protein, as well as protein-RNA interac-

tions. These data support the growing understanding of the

oncogenic role miRNAs and other epigenetic regulators play in

tumorigenesis (Rupaimoole and Slack, 2017).

ERBB4 had apattern of depletion similar to EGFR (Figure S4D),

with overexpression of peptides derived from the ERBB4 regula-

tory P-loop and alpha C-helix resulting in a significant fitness

defect, highlighting the importance of this region in ERBB allo-

steric regulation and proliferative signaling (Bose and Zhang,

2009). This example also supports previous work suggesting

that alpha C-helix displacement is a broadly shared (and thera-

peutically targetable) mechanism of regulating kinase activity

(Palmieri and Rastelli, 2013). Further supporting this conclusion,

alpha C-helix displacement has even seen clinical success in

breast cancer via the small molecule EGFR/HER2/ERBB4 inhib-

itor Lapatanib (Palmieri and Rastelli, 2013).

Next, we sought to validate the anti-proliferative effects of

select peptides identified as depleted in the screen via a comple-

mentary technology other than sequencing. Specifically, after

transduction with putative anti-proliferative peptides derived

from WT proteins, Hs578T cells and MDA-MB-231 cells were

seeded in 96-well plates with proliferation measured via the

colorimetric WST-8 assay (Figures 3A, S5A, and S5B; Table

S6). All 12 peptides tested had significant growth defects when

assayed in Hs578T and/or MDA-MB-231 cells compared with

infection with the GFP control plasmid. EGFR-697 specifically

was extremely harmful to cell growth in both cell lines. We simi-

larly tested three peptides derived from the KRAS-Q61K-mutant

protein (KRAS61K-24, KRAS61K-28, and KRAS61K-34), all of

which significantly reduced cell growth in both cell lines (Figures

S5A and S5B). To test the specificity of these perturbations, we

transduced MCF-7 cells with RAF1-73 and EGFR-697. MCF-7

(B) Plot of individual peptide enrichment/depletion for mutant screen. 579mutant cancer drivers covering 53 driver genes were assayed for growth inhibition as in

(A). Peptides are centered around zero depletion, with a subpopulation being significantly deleterious to cells when overexpressed genetically. Peptides with log2
fold change values less than �8 are labeled.

(C) Correlation between WT and mutant amino acid fitness scores. There is a high correlation (Pearson r = 0.787) between WT and mutant amino acids.

(D) Plots showing the correlation between peptide depletion versus charge and hydrophobicity. There is little correlation between charge/hydrophobicity and

peptide log fold change, indicating that gross physiochemical factors do not mediate peptide effects on fitness.

(E) Per position fitness scores for NFE2L2, MDM2, and PIK3CA. Select known PPIs are annotated on the plots, corresponding to regions of significant depletion.

(F) Per position fitness scores for the tumor suppressor CDKN2A and the negative control GFP. No regions of depletion are identified over the length of either

protein.

(G) Fitness scores for mutant residues derived from KRAS. Functional regions sourced from UniProt are overlaid above WT fitness. Dots indicate mutant amino

acid fitness scores. Red dots indicate mutant amino acid fitness scores that were significantly depleted during the pooled screen (BH-adjusted p < 0.05) (see also

Figures S3 and S4).
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Figure 3. Validation of anti-proliferative peptide activity and expression
(A) In-vitro-arrayed validation of lentivirus delivered gene fragments derived fromWT proteins. Peptides predicted to be deleterious to cell growth (by depletion in

pooled screen) significantly inhibited proliferation relative to GFP control. Cell proliferation wasmeasured via theWST-8 assay after one week of growth following

(legend continued on next page)
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cells are Ras WT and not sensitive to RAF1 knockout; corre-

spondingly, they show no fitness defect upon overexpression

of the RAF1-73 peptide (Eckert et al., 2004; Broad Institute,

2019). Additionally, MCF-7 cells show a reduced fitness defect

upon overexpression of EGFR-697, consistent with their status

as an EGFR-negative cell line (Uhlen et al., 2017). As well, the

EGFR-negative and Ras WT HEK293T cell line transduced with

EGFR-697 and RAF1-73 showed no growth defects, further indi-

cating that this screening methodology identifies context depen-

dent inhibitors of cellular proliferation rather than generally toxic

peptide motifs.

For individual peptides that were significantly depleted, we

saw consistent depletion of nearby peptides, supporting our

strategy of using an amino-acid-level score to rank domains (Fig-

ure 3B). To understand the level of peptide expression achieved

via our lentiviral constructs, we then performed qPCR on all pep-

tides validated via the WST-8 assay (Figure 3C). We additionally

generated 3xFLAG-tagged versions of several significantly

depleted peptides to verify peptide constructs had robust pro-

tein translation when overexpressed via lentivirus (Figure 3D).

The peptides tested showed strong expression at the RNA and

protein levels 72 h after transduction, indicating that the EF1a

promoter can drive robust expression of small peptides.

Assuming the peptides are translated from their mRNA at a

similar rate as GAPDH is (GAPDH has a cellular concentration

of approximately 0.4 mM), it can be estimated from the qPCR

data that peptide molar concentrations in MDA-MB-231 cells

range from 0.15–6.5 mM depending on the construct (Lazarev

et al., 2020).

We further tested three putatively enriched peptides derived

from AKT1 (AKT1-115), NOTCH1 (NOTCH1-626), and CCND1

(CCND1-167) in MDA-MB-231 cells to verify that they conferred

a growth advantage. All three peptides grew more rapidly than a

control group transduced with GFP-coding lentivirus, confirming

that if desired this methodology can be used to identify peptides

with a pro-proliferative phenotype (Figure S5C). While the

average length of a protein domain is predicted to be 100 aa

(Lin and Zewail, 2012), we hypothesized based on the modular

conformation of long proteins and prior work focused on domi-

nant negatives that 40-mer peptides would be sufficient to fold

into ordered structures. To experimentally examine the effect

of peptide length on antiproliferative phenotype we transduced

MDA-MB-231 cells 4 different-sized peptides centered on our

identified hits RAF1-73 and EGFR-697. Although most of the

peptides tested still had a growth disadvantage compared with

the GFP control, the parent peptides consistently caused slower

cell growth than the shorter versions did (Figure S5D).

After validating the bioactivity and expression of peptides

identified in the screens, we then sought to extract higher order

functional information from the dataset. First, we examined how

peptide depletion corresponded to the 3D structure of RB1. The

tumor suppressor RB1 contained domains that were highly dele-

terious to cell fitness. The N-terminal RbN domains were both

highly depleted, potentially due to previously described allo-

steric interactions with the cell-cycle regulatory transcription fac-

tor E2F (Burke et al., 2012). Consistent with this hypothesis, it has

been previously shown that the addition of N-terminal domains

of RB1 is sufficient to halt DNA replication in xenopus egg ex-

tracts (Borysov et al., 2015). By overlaying the amino-acid-level

fitness scores on the crystal structure for RB1, we found that

the periodicity of the depletion profile correlates with the transi-

tion between the various alpha helices of the protein (Figure 4A;

Table S7). This result highlights how higher-order protein-level

features can inform observed peptide fitness and give new in-

sights into the modular nature of the RB1 structure.

We next visualized how peptides from this screen impact can-

cer-driver-specific signaling networks (Figure 4B) using publicly

available protein-protein interaction data from Interactome IN-

SIDER (Meyer et al., 2018). Interactome INSIDER predicts pro-

tein-protein interaction interfaces via a random forest classifier

built on experimental cocrystal structures, homology models,

and co-evolution data.While the PepTile screeningmethodology

is agnostic to mechanism of action (overexpressed peptides can

interact with proteins, nucleic acids, lipids, small molecules, etc.

within the cell), we chose to focus initially on protein-protein in-

teractions owing to the availability of extensive databases of pre-

dicted and experimentally validated interactions. In the network

presented in Figure 4B, edges indicate whether a protein interac-

tion interface overlaps a region of peptides deleterious to cell

fitness, and nodes are colored by gene fitness data sourced

from DepMap CRISPR knockout screening (Meyer et al., 2018;

Broad Institute, 2019). There was not a significant association

between the DepMap CERES fitness score (an estimate of

knockout fitness adjusted for copy-number variations) for a

gene and the minimum peptide-derived domain fitness for that

gene (Pearson p = 0.79). This result stems from the fact that (1)

not every gene that is essential hasmodular domains fromwhich

a strongly bioactive peptide can be derived and (2) many genes

with no fitness impact in CRISPR screens (such as the tumor

suppressor RB1,FBXW7, or TP53) have interfaces from which

deleterious peptides can be mined. Together, these analyses

highlight the ability of peptides derived from protein-protein

interaction interfaces to perturb cellular proliferation. 53.7% of

Interactome INSIDER predicted physical interactions between

lentiviral transduction. Bar plots indicate mean, with error bars representing standard error (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Each panel

represents a separately conducted experiment (hence the two MDA-MB-231 panels).

(B) Representative distributions of peptide level log2 fold change for all peptides overlapping several hits identified from the screen. In addition, we have included

an arbitrarily selected region of the GFP protein to highlight a domain with no growth disadvantage. There is consistent depletion of the peptides surrounding hits,

providing further justification for our strategy of averaging nearby peptides into an amino-acid-level score.

(C) qPCR validation of lentivirally delivered peptide expression levels relative to GAPDH internal control. MDA-MB-231 cells were transduced at an MOI of 4 in

duplicate, with RNA extracted after 72 h. Expression levels of all peptide hits shown in the main text have been quantified at the RNA level, along with a non-

targeting 3XFlag tag control peptide for reference. Also included is a negative control GFP transduction, lacking appropriate primer-binding sites for amplification.

(D) Validation of peptide expression via immunofluorescence. MDA-MB-231 cells were transduced (MOI of 4) with lentivirus coding for 33 FLAG-tagged peptides

72 h before immunostaining and imaging (see STAR methods). Expression levels of six antiproliferative peptides shown in the main text have been quantified at

the protein level, along with untransduced MDA-MB-231 cells as a control. Additionally, the protein expression level of the three validated enriched peptides was

tested. All peptides show robust expression, validating the protein-level expression of these small peptide constructs (see also Figure S5).
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Figure 4. Anti-proliferative peptides derived from oncogenic interaction interfaces

(A) RB1 per position fitness scores mapped onto the RB1 N-terminal crystal structure. Regions of relatively high and low depletion appear to correspond to

transitions between specific alpha helix’s in the RB1 structure, illustrating how structural elements in the parent protein control peptide phenotype. (B) Network of

potential interactions among cancer drivers in this gene set. Interaction data are sourced from Interactome INSIDER, with fitness data from DepMap CRISPR

screening overlaid. Nodes colored in red are essential for cell fitness, while nodes colored in blue are non-essential or have increased growth rates upon

(legend continued on next page)
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cancer driver genes assayed overlap regions with bioactive pep-

tides, supporting the broad importance of modular interacting

motifs in controlling cell fitness.

To further validate that our peptide overexpression platform

can identify biophysical features relevant to the protein from

which they were derived, we compared themutant TP53 peptide

data with existing TP53 deep mutational scan (DMS) data (Fig-

ure 4C) (Kotler et al., 2018). In this DMS dataset, TP53-null cells

were transduced with a library of lentiviral particles coding for

full-length mutant TP53 variants and subjected to competitive

growth. After first filtering the DMS data for only TP53 mutants

with a high magnitude of effect on cell fitness (absolute fitness

value >0.5) we compared the fitness of the corresponding

mutant peptides from our own screen. We surmised that given

the highly dissimilar nature of the screening technologies,

limiting the comparison to only high effect size mutants would

allow for a clearer interpretation. Inferred TP53 functionality

was defined as the inverse of the TP53 variant ‘‘relative fitness

score,’’ insofar as synonymous, fully functional, TP53 mutants

have highly negative fitness scores due to their activity as tumor

suppressors. Even with the highly dissimilar screening modal-

ities, we observed significant correlation (Pearson r = 0.279;

p = 0.045) between the predicted mutant TP53 functionality

from the DMSdata to themutant TP53 peptide fitness. This com-

parison to DMS data indicates that TP53mutants expected to be

functional (i.e., have structures consistent with appropriate

ligand binding and cellular bioactivity) generate mutant peptides

with greater bioactivity in the cell. Together, these results high-

light a major utility of this approach i.e., the ability to interrogate

user-defined peptide sequences as opposed to those present

only in WT protein structures. Future assays could combine

this peptide screening protocol with structural modeling to

design and test rationally mutagenized peptide libraries with

novel biophysical properties or improved target binding.

Engineering peptides for exogenous delivery
After validating the activity of these peptide constructs when

overexpressed genetically, we investigated if peptides from

our screen could function when repurposed as exogenously

delivered drug-like molecules (Figure 5A). To test this, we chem-

ically synthesized EGFR-697 as well as RAF1-73 and measured

their ability to inhibit cell growth when conjugated to the TAT cell-

penetrating protein transduction domain (Schwarze et al., 1999).

EGFR-697 maintained its anti-proliferative effects when deliv-

ered exogenously, showing a dose-dependent impact on cell

viability (Figure 5B; Table S8). The IC50s of this peptide was

33.3 mM for Hs578T and 63 mM for MDA-MB-231. Moreover,

RAF1-73 was also highly deleterious to cell growth, with IC50

values of 27.0 and 32.6 mM for Hs578T and MDA-MB-231,

respectively. These IC50 values are comparable with the mean

IC50 of all drugs tested on these cell lines in the Sanger Geno-

mics of Drug Sensitivity Database (48.6 mM for Hs578T and

54.0 mM for MDA-MB-231 cells), contextualizing the relative ac-

tivity of these peptides and the potential for this methodology

(Yang et al., 2013). We also identified two additional peptides

(RASA1-468 and MDM2-25) from the larger screen in MDA-

MB-231 cells, which show cytotoxic activity when delivered

exogenously. RASA1-468 is derived from the Pleckstrin homol-

ogy domain of RASA1 (mediating various PPIs and interactions

with phospholipids; Scheffzek and Welti, 2012), while MDM2-

25 is derived from the p53-binding domain of MDM2 (Liu et al.,

2010). These peptides had IC50s of 23 and 33 mM, respectively,

in MDA-MB-231 cells (Figure 5B). This result demonstrates that

how the high-throughput nature of the PepTile screening strat-

egy can identify diverse bioactive peptides that maintain activity

when conjugated to a cell-penetrating motif. We similarly antic-

ipate there are many more unexplored hit peptides from the

screen which could show anti-cancer activity when delivered

exogenously. Collectively, these data further confirm that the

peptides identified in this screen are acting at the protein level

and suggest that further engineering of these compounds could

yield translationally relevant biopharmaceuticals.

As peptide constructs will likely require additional engineering

to maximize efficacy toward intracellular targets in vivo, we have

also demonstrated a streamlined recombinant production proto-

col as a complement to the PepTile approach and general

resource to accelerate the engineering of peptide therapeutics.

This method was validated by the production of milligram-scale

quantities of TAT conjugated 3xFLAG peptide, outperforming

the costs associated with commercial peptide synthesis (Fig-

ure S6; STAR methods). Because this peptide production

method (as well as the PepTile fitness screening strategy—see

Table S9) requires inexpensive equipment and few specialized

reagents, it is easily adaptable to labs of any scale, as well as

automated medium throughput screening approaches.

Characterization of peptide function
We then sought to validate our hypothesis that the functionality

of these putative inhibitory peptides was dependent on the role

and structure of the WT protein domain they were derived from.

Specifically, we explored whether the RAF1-73 peptide

(derived from the RAF1-RBD) retained the ability of the full-

length domain to bind activated Ras proteins. To evaluate

this potential interaction, we co-transfected the constitutively

active KRAS G12V mutant and 3xFLAG-RAF1-73 in HEK293T

cells, then performed a co-immunoprecipitation using anti-

FLAG agarose beads (Figure 6A). We chose to transfect with

a constitutively active KRAS variant because the Ras-Raf inter-

action occurs only on activated Ras proteins. Western blot

analysis of the immunoprecipitated protein complexes subse-

quently verified the protein-protein interaction between RAF1-

73 and Ras.

knockout. Dark gray nodes indicate genes for which high-confidence CRISPR-based fitness data were not available. Edges indicate a predicted interaction

interface between the cancer drivers. Red edges indicate interactions which overlap regions of significant peptide depletion (fitness score < �1.5 for interface

amino acids). Arrows highlight example depleted peptide regions corresponding to specific oncogenic PPIs.

(C) Comparison of mutant fitness scores derived from peptide screening data, with fitness scores derived from DMS data in a TP53-null cell line (Kotler et al.,

2018). After filtering out TP53 mutants with little effect on cell fitness in the DMS (absolute value of fitness scores < 0.5), inferred that TP53 functionality is

significantly correlated with mutant-peptide-derived fitness (Pearson, p = 0.045), supporting the hypothesis that peptide screening can be used to identify

functionally important residues in the context of cancer cell fitness (see also Figures S3 and S4).
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Next, we performed a similar experiment investigating the po-

tential interaction between full-length EGFR and EGFR-697,

confirming detectable co-immunoprecipitation of the EGFR-

697 peptide with the full-length EGFR protein (Figure 6A). In or-

der to better understand how the EGFR-697 peptide was per-

turbing the cells, we conducted RNA sequencing on Hs578T

cells modified via lentivirus to overexpress EGFR-697 (Table

S10). We identified 225 differentially expressed genes (BH-

adjusted p value < 0.05) and performed gene set enrichment

analysis (GSEA) to identify upregulation and downregulation of

genetic pathways (Sergushichev, 2016). We tested 239 KEGG

pathways corresponding to cell signaling and metabolism, with

22 pathways showing highly significant (false discovery rate <

0.025) upregulation/downregulation in cells expressing EGFR-

697 compared with control cells transduced with GFP (Fig-

ure 6B). Several metabolic pathways relating to oxidative phos-

phorylation and carbon metabolism were downregulated,

consistent with the role of oncogenic EGFR signaling as a driver

of metabolic alterations (Borlak et al., 2015; Li et al., 2015; Lan-

ning et al., 2017). Furthermore, genes relating to DNA replication

were also downregulated, consistent with the observed slow

growing phenotype. In addition to performing GSEA on KEGG

pathways, we also tested a set of curated genes from theMolec-

ular Signatures Database comprised genes significantly downre-

gulated/upregulated in H1975 cells upon treatment with an irre-

versible EGFR inhibitor (Kobayashi et al., 2006). We chose to test

against these gene sets derived from EGFR inhibition experi-

ments because they describe the putative transcriptomic effects

of perturbing EGFR at the protein level. EGFR-697 transduction

in Hs578T cells resulted in downregulation of genes identified as

downregulated in response to chemical EGFR inhibition and up-

regulation of genes identified as upregulated (FDR = 0.008 and
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Figure 5. Cancer-driver-derived peptides have protein-level activity and potential drug-like function
(A) Overview of peptide functionalization for intracellular delivery. Hit peptides from the screen were conjugated to a TAT cell-penetrating motif and produced via

solid phase peptide synthesis.

(B) In vitro testing with chemically synthesized peptides (n = 3–4). Chemically synthesized hit peptides conjugated to a cell-penetrating TAT protein transduction

motif were added to cells at 0–100 mM. A 33 FLAG peptide conjugated to TAT served as the negative control. Cell viability wasmeasured 24 h later by theWST-8

assay, indicating that TAT functionalized hit peptides can effectively inhibit the growth of Hs578T and MDA-MB-231 cells in a dose-dependent manner. Dotted

lines indicate 95% confidence intervals for nonlinear fit. TAT-RAF1-73 and TAT-EGFR-697 were tested on the same plate, hence identical negative control

measurements (see also Figure S6).
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Figure 6. Cancer-driver-derived peptides show context-dependent activity

(A) Peptide mechanism explored via co-immunoprecipitation. 3X-Flag-tagged RAF1-73 derived from the RBD of RAF1 pulls down activated Ras when immu-

noprecipitated, indicating retention of WT domain biological functionality. Analogously, the 3X-FLAG-tagged EGFR-697 peptide pulls down the co-transfected

full-length EGFR protein confirming a protein-level interaction between the two proteins.

(B) Results of RNA sequencing on EGFR-697 expressing Hs578T cells. EGFR-697 overexpression results in significant growth arrest, and differential expression

of 225 genes, as well as significant downregulation of pathways relevant to cellular proliferation. Additional GSEA analysis revealed a transcriptional phenotype

consistent with perturbed signaling along the EGFR pathway. Gene set ‘‘KOBAYASHI_EGFR_SIGNALING_24HRS_DN’’ is a gene set composed of genes

downregulated upon treatment with an irreversible EGFR inhibitor in H1975 cells (Kobayashi et al., 2006). Treatment with EGFR-697 peptide results in significant

downregulation of this gene set in Hs578T cells. The ‘‘KOBAYASHI_EGFR_SIGNALING_24HRS_UP’’ is a gene set from the same experiment highlighting genes

that are upregulated upon EGFR inhibition. This gene set is significantly upregulated upon EGFR-697 overexpression. The vertical lines on the plot each represent

a gene in the gene set, with their location representing their position in the ranked list of genes from the RNA sequencing data (ranked by DESeq2’s shrunken log

fold change; Love et al., 2014). NES is the normalized enrichment score, quantifying the extent geneswithin the given gene set are up or downregulated in the RNA

sequencing data. FDR is the false discovery rate for that enrichment score.

(C) EGFR expression levels of breast cancer cell lines quantified via western blot. MCF-7 cells show no detectable expression of EGFR.

(D) Breast cancer cell line panel treated with genetically overexpressed EGFR-697, synthesized TAT-EGFR-697 and erlotinib. Cell viabilities were determined via

crystal violet staining of live cells after 7 days for the genetically overexpressed constructs, or 24 h for the exogenously delivered molecules. For the genetically

(legend continued on next page)
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0.058, respectively). To provide further confidence that EGFR-

697 is acting in an EGFR-dependent manner, we tested the ef-

fects of genetically overexpressed EGFR-697 and TAT-EGFR-

697 in a panel of breast cancer cell lines with varying levels of

EGFR expression (Figures 6C and 6D). Both the genetically over-

expressed and the exogenously delivered versions of EGFR-697

showed greater activity in cell lines with detectable EGFR

expression. These data were benchmarked against a high

dose of erlotinib, showing a similar EGFR-expression-depen-

dent change in sensitivity. Collectively, these data support the

hypothesis the EGFR-697 peptide perturbs breast cancer cells

in an EGFR-dependent manner. However, the exact mechanism

of this interaction and the extent of off-target interactions will

need further study.

As a final analysis of peptide function, we have explored

computationally the predicted structure of peptides derived

from RAF1 and EGFR (Figure S7). We first examined whether

the individual hit peptides RAF1-73 and EGFR-697 had modeled

structures resembling that of the WT domain they were derived

from (Figure S7A). Peptide structures were generated using

TrRosetta, a highly accurate protein structural prediction soft-

ware (Yang et al., 2020). Both RAF1-73 and EGFR-697 were pre-

dicted to fold into structures highly similar to that of the WT pro-

tein (TM scores of 0.63 and 0.67, respectively). A TM score

greater than 0.5 corresponds to a p value less than 5.5 3 10�7

and is a widely used criterion when two protein structures have

the same fold (Xu and Zhang, 2010). Subsequently, we compre-

hensively modeled 957 peptides derived from RAF1 and EGFR,

which had available overlapping crystal structures on PDB. We

found that the vast majority (>75%) of the peptide models

derived from RAF1 and EGFR had predicted structures highly

similar to that of the full-length protein (Figure S7B). All models

predicted from trRosetta had confidence scores (predicted local

distance difference Test outputted by DeepAccNet) greater than

0.58, indicating high stereochemical plausibility of the predicted

models (Figures S7C and S7D). However, a small subset of

derived peptides modeled had structures diverging from that

of the full-length protein (minimum TM score observed =

0.305). To evaluate the variation in TM scores among the frag-

ments, we analyzed the TM scores of each fragment as a func-

tion of its secondary structure. We found that secondary struc-

ture in the full-length protein is not a strong driver of predicted

peptide conformational similarity to WT folding (Figure S7E).

Peptides derived from regions with alpha helixes, beta sheets,

or both were largely predicted to fold into structures resembling

the full-length protein (mean TM scores of 0.74, 0.82, and 0.76,

respectively). When examining the predicted structures least

similar to the full-length protein (TM scores < 0.5), we found

that secondary structure of the peptides was consistent with

the full-length structure in 79% of low similarity RAF1 peptides

and 71% of EGFR peptides. This suggests that the low TM

scores were attributed to differences in the angle of certain

amino acids rather than the misfolding of secondary structures

(Figure S7F). Given the diversity of peptides tested, some pep-

tides which deplete in this screen may fold into structures dis-

similar to that of the full-length protein from which they are

derived (just as some sgRNA or siRNA have unexpected off-tar-

gets), underscoring the need for robust downstream validations

of screen results.

DISCUSSION

Overall, we have demonstrated a comprehensive screening plat-

form that enables the identification of peptide inhibitors of can-

cer cell growth. This methodology is scalable due to the ease

of oligonucleotide synthesis, simple to perform, and highly pre-

cise, allowing users to interrogate protein sequences with sin-

gle-amino-acid resolution. Because the library of peptide-coding

gene fragments is user defined and custom synthesized, this

strategy is easily adaptable to diverse studies where a selection

strategy can be devised to enrich or deplete cells with the pheno-

type of interest.

Studies on signal transduction in the mammalian cell often

consider proteins as a series of nodes within a network for

simplicity (Azeloglu and Iyengar, 2015). The results presented

here also highlight that signal transduction is highly dependent

on tight control of numerous modular functional units within pro-

teins to mediate information flow and maintain cell fitness. Sup-

porting this conclusion, peptide mediated perturbations to the

endogenous interaction network of proteins and their diverse li-

gands (proteins, small molecules, DNA/RNA, etc.) can strongly

impact cellular growth rates. Ongoing efforts to comprehensively

map protein functional domains are thus critical to understand-

ing disease-relevant cell signaling programs. Furthermore, we

find that functional domains within proteins can serve as a prom-

ising source of bioactive peptides with which to perturb signaling

and protein-protein interactions.

However, PepTile as implemented has several limitations

which future technology development can iteratively work to

improve. First, tiling libraries are likely unsuited for inhibiting pro-

tein interactions mediated by residues close in physical space,

but far apart in the full-length ORF. In the future, using structural

modeling to inform library design can generate synthetic pep-

tides better suited for inhibiting this type of interaction. Addition-

ally, current DNA synthesis technology limits array synthesized

DNA libraries to less than ~350 bp (with increasing error rates

as the size of the DNA increases). Moving forward, improve-

ments in DNA synthesis will open new avenues for screening

more complex peptide and protein therapeutics efficiently. As

well, PepTile is currently agnostic to any post-translational mod-

ifications which may be essential for peptide function. Advances

in high-throughput protein-level analysis will additionally allow

for a more rapid and accurate characterization of peptide

mechanism.

overexpressed EGFR-697, after 7 days of growth there was a significant association between EGFR expression levels and cell lines viability relative to a GFP

transduced control (Pearson p < 0.0001, r = �0.803). EGFR expression levels were quantified based on the pixel intensity of the western blot data shown in (C),

relative to the GAPDH internal control. At 50 mM, the cell lines with detectable EGFR expression show a reduction in viability after 24 h of exposure to TAT-EGFR-

697. In contrast, EGFR-negativeMCF7 cells show no reduction in viability. Cell viabilities are normalized to a PBS-vehicle-treated control on the same plate. Cells

expressing EGFR at detectable levels have greater sensitivity to erlotinib (24-h treatment) than non-EGFR-expressing MCF7 cells. Cell viabilities for erlotinib-

treated cells are normalized to DMSO-treated cells on the same plate. Data indicate mean ± standard deviation (see also Table S10).
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Peptides expressed outside the context of the native protein

may in some cases have bioactivity not consistent with the func-

tion of the parent protein. Peptides derived from highly hydro-

phobic or transmembrane domains, domains with high homol-

ogy to other proteins, those bearing reactive moieties such

cysteines, or peptides with a high net charge could result in

non-specific binding/aggregation within the cell. This possibility

highlights the importance of downstream validation of peptide

hits, and the broader challenge of identifying the mechanism un-

derlying biological phenotypes (Editorial, 2010). Furthermore,

peptides mined via the screens will likely have only moderate

binding affinities and bioavailability, and to improve activity sys-

tematic mutagenesis may be required. To this end, WT peptide

screening could be followed up with a smaller secondary screen

mutagenizing hit compounds to identify semi-synthetic binders

with higher affinity to the target protein, better bioavailability, or

other improved functional characteristics.

Inhibitory peptides have immense potential as both research

tools and therapeutics. Direct inhibition of protein activity without

genetic alteration opens unique screening avenues with which to

probe protein function. For example, protein-protein interaction

networks could be more precisely perturbed via inhibitory pep-

tides contacting a specific protein surface than by complete ge-

netic knockdown. The ability to identify protein regions associ-

ated with cell fitness can also serve to complement traditional

drug development efforts, such as determining critical residues

for inhibition via small molecules or antibodies. Additionally,

this screening resource identifies inhibitory peptides that are

immediately translatable, bypassing the need for additional

high-throughput screens to identify candidate molecules. Func-

tionally, peptides can be (1) readily made cell permeable via

coupling of cell-penetrating motifs to enable drug-like function

(Guidotti et al., 2017) or, alternatively, (2) coupled to chemical

moieties such as poly-ethylene glycol (PEG) or protein domains

with naturally long serum half-life such as Fc, transferrin, or albu-

min to improve persistence in circulation (Strohl, 2015). In this

study, with minimal engineering we developed two drug-like

peptides that opposed triple-negative breast cancer cell growth

in vitro as effectively as some FDA-approved small molecules

targeting the same proteins (Yang et al., 2013). Advances in bio-

logics delivery will further improve the translational relevance of

this strategy. We anticipate a future role for this method of pep-

tide inhibitor screening in both basic research and drug

development.
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Omomyc, a potential Myc dominant negative, enhances Myc-induced

apoptosis. Cancer Res 62, 3507–3510.

Strohl, W.R. (2015). Fusion proteins for half-life extension of biologics as a

strategy to make biobetters. BioDrugs 29, 215–239.

Tropea, J.E., Cherry, S., and Waugh, D.S. (2009). Expression and purification

of soluble His6-tagged TEV protease. Methods Mol. Biol. 498, 297–307.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-GAPDH rabbit mAb Cell Signaling cat#2118S; RRID:AB_561053

anti-EGFR rabbit mAb Cell Signaling cat#4267S; RRID:AB_2246311

anti-RAS rabbit mAb Abcam cat#ab108602; RRID:AB_10891004

anti-FLAG mouse mAb Millipore cat#F1804; RRID:AB_262044

Anti-MouseIgG (HRP Conjugated) Cell Signaling cat#7076S; RRID:AB_330924

Anti-RabbitIgG (HRP Conjugated) Cell Signaling cat#7074S; RRID:AB_2099233

Anti-Mouse IgG (Dylight 488) Abcam cat#ab96871; RRID:AB_10680543

Anti-FLAG agarose beads Millipore cat#A2220-1ML; RRID:AB_10063035

Bacterial and virus strains

Stbl4 Thermo-Fisher cat#11635018

T7 Express New England BioLabs cat#C2566H

Chemicals, peptides, and recombinant proteins

Custom Synthesized Peptides Genscript cat#SC1208

Puromycin Thermo Fisher cat#A1113802

IPTG Thermo Fisher cat#15529019

Erlotinib Sigma cat#SML2156-50MG

Lipofectamine 2000 Thermo-Fisher cat#11668030

KAPA Hifi Hotstart Ready Mix Roche cat#7958935001

Ampure XP beads Beckman cat# A63881

Genomic DNA Isolation Kit Qiagen cat# 69504

SeaBlock Thermo cat# 37527

RNA Purification Kit Qiagen cat# 74104

ProtoScript NEB cat# E6560S

RNA Sequencing Kit NEB cat# E7530L

PCR Purification Kit Qiagen cat# 28104

EcoRI NEB cat# R0101S

Gibson MasterMix NEB cat# E2611S

Plasmid DNA Maxiprep Kit Qiagen cat# 12963

iTaq Universal SYBR Green Supermix BioRad cat# 1725120

Polybrene Millipore-Sigma cat#TR-1003-G

Triton x-100 Millipore-Sigma cat#X100-5ML

NP-40 Thermo-Fisher cat#FNN0021

.05% Trypsin-EDTA Thermo-Fisher cat#25300062

DMEM Thermo-Fisher cat#10566016

.25% Trypsin-EDTA Thermo-Fisher cat#25200056

FBS Thermo-Fisher cat#10082147

SDS BioRad cat#1610418

Tris-Glycine BioRad cat#1610734

Ni-NTA Resin Thermo-Fisher cat#88223

Terrific Broth Thermo-Fisher cat#22711022

Carbenicillin Teknova cat#C2199

Critical commercial assays

WST-8 Cell Viability Dye Dojindo cat#CK04-05

Deposited data

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TP53 Deep Mutational Scan Data (Kotler et al., 2018) https://doi.org/10.1016/j.molcel.2018.

06.012

Interactome INSIDER (Meyer et al., 2018) http://interactomeinsider.yulab.org/

Sequencing Data: Peptide Overexpression

Screens

This Paper NCBI Sequencing Read

Archive: PRJNA720162

Experimental models: Cell lines

MDA-MB-231 ATCC cat#HTB-26

MDA-MB-468 ATCC cat#HTB-132

Hs578T ATCC cat#HTB-126

MCF-7 ATCC cat#HTB-22

HEK293T ATCC cat#CRL-3216

Oligonucleotides

PEP_01:GGCTAGGTAAGCTTGATA

TCGGCCACCATG

IDT 25 nmole DNA Oligo

PEP_02:GGCGGCACTGTTTAACA

AGCCCGTCAGTAG

IDT 25 nmole DNA Oligo

PEP_03:ACACTCTTTCCCTACAC

GACGCTCTTCCGATCTGCTTGA

TATCGGCCACCATG

IDT 25 nmole DNA Oligo

PEP_04:GACTGGAGTTCAGACGT

GTGCTCTTCCGATCTCACTGTTT

AACAAGCCCGTCAGTAG

IDT 25 nmole DNA Oligo

GAPDH_F: ACAGTCAGCCGCATCTTCTT IDT 25 nmole DNA Oligo

GAPDH_R: ACGACCAAATCCGTTGACTC IDT 25 nmole DNA Oligo

EF1a_seq:TTCTCAAGCCTCAGACAGTGG IDT 25 nmole DNA Oligo

Recombinant DNA

pET Champion Thermo-Fisher cat#K630203

pCMV delta R8.2 Unpublished (Trono Lab) Addgene cat#12263

pMD2.G Unpublished (Trono Lab) Addgene cat#12259

pEPIP This Paper N/A

Kras (G12V)-pcw107 Martz et al., 2014 Addgene cat#64602

pEGIP Zou et al., 2009 Addgene cat#26777

Software and algorithms

ggplot2 https://cran.r-project.org/web/packages/

ggplot2/index.html

Version 3.3

DESeq2 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Version 3.12

Dplyr https://cran.r-project.org/web/packages/

dplyr/index.html

Version 1.05

RcppRoll https://cran.r-project.org/web/packages/

RcppRoll/

Version 0.3.0

Readr https://cran.r-project.org/web/packages/

readr/index.html

Version 1.4.0

Peptides https://cran.r-project.org/web/packages/

Peptides/index.html

Version 2.4.3

Biostrings https://bioconductor.org/packages/

release/bioc/html/Biostrings.html

Version 3.12

ggrepel https://cran.r-project.org/web/packages/

ggrepel/index.html

Version 0.9.1

hexbin https://cran.r-project.org/web/packages/

hexbin/index.html

Version 1.28.2

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prashant

Mali (pmali@eng.ucsd.edu).

Materials availability
Plasmids generated in this study will be distributed via Addgene and upon request.

Data and code availability
d Source data related to this manuscript can be found in the supplemental files, with raw sequencing data publicly accessible on

the NCBI Sequence Read Archive via accession number SRA: PRJNA720162.

d This paper does not report original code.

d Additional scripts used to generate the figures reported in this paper are available in the packages listed in the key resources

table, and their specific use is described in the STAR methods.

d Any additional information required to reproduce this work is available from the lead contact.

METHOD DETAILS

Design of peptide coding gene fragment libraries
Peptide coding gene fragments from target genes were composed of the DNA coding sequence for all 40mer amino acids from the

genes/mutants listed in Figures S2 and S3 and themain text. For fitness screens the 5’ and 3’ ends of each gene fragment weremodi-

fied to contain a start and stop codon, as well as ~20bp of DNA homologous to the expression plasmid for downstream Gibson

cloning.

Cancer driver gene fragment cloning
Peptide coding gene fragment libraries were synthesized as pooled single stranded oligonucleotides by Custom Array. These oligo-

nucleotides were then PCR amplified using KAPA-HiFi (Kapa Biosystems) to generate double stranded gene fragments compatible

with Gibson cloning. 50ml PCR reactions were set up with 25ng of pooled oligonucleotide template and 2.5 ml of primers PEP_1 and

PEP_2 (10mM). The thermal cycler was programmed to run at 95C for 3minutes, followed by 12 cycles of 98C for 20 seconds, 65C for

15 seconds, and 72C for 45 seconds. This was followed by a final 5-minute extension at 72C. PCR products were then purified using

the QIAquick PCR purification kit. See Table S5 for primer sequences.

The peptide overexpression vector pEPIP was generated from a modified pEGIP (Addgene #26777). The vector was modified to

remove the GFP insert, insert an EcoRI cloning site, and add primer binding regions with which to amplify the libraries for HTS. To

clone the gene fragment libraries into the expression vector, pEPIP was first digested with EcoRI (NEB) for 3 hours at 37C. The line-

arized vector was then column purified using the QIAquick PCR purification kit. Subsequently, Gibson assembly was used to clone

the gene fragment libraries into the pEPIP vector. For each reaction, 10ml of Gibson Reaction MasterMix (NEB) was combined with

100ng of the vector and 50ng of the double stranded gene fragment library, with H2O up to 20ml. The Gibson reactions were then

incubated at 50C for 1hr and transformed via electroporation into 200ml of ElectroMAX Stbl4 competent cells per 10,000 library

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pheatmap https://cran.r-project.org/web/packages/

pheatmap/index.html

Version 1.0.12

fgsea https://bioconductor.org/packages/

release/bioc/html/fgsea.html%20–%

20version%203.12

Version 3.12

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Version 2.4.2

MaGeCK https://sourceforge.net/p/mageck/

wiki/Home/

Version 0.5.9

Robetta https://robetta.bakerlab.org/ N/A

STRIDE http://webclu.bio.wzw.tum.de/stride/ N/A

PyMol https://pymol.org/2/ Version 2.3.3

FLASH https://ccb.jhu.edu/software/FLASH/ Version 1.2.11

STAR https://github.com/alexdobin/STAR Version 2.7.8.a
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elements (Invitrogen) according to the manufacturer’s protocol. The Stbl4 cells were then resuspended in 4mL of SOC media and

placed at 37C with shaking for 1hr to recover. After recovering, 1ml of the SOC/cell suspension was spread on LB-carbenicillin plates

to calculate library coverage, with the remaining SOC/cells used to inoculate a 100ml culture of LB-carbenicillin. Greater than 200 fold

library coverage was obtained to ensure all gene fragments were well represented. After 16 hr of incubation at 37C with shaking,

plasmid DNA was isolated via a Qiagen Plasmid Plus Maxi Kit.

Lentivirus production
Replication deficient lentiviral particles were produced in HEK293T cells (ATCC) via transient transfection. HEK293T cells were grown

in DMEM media (Gibco) supplemented with 10%FBS (Gibco). The day before transfection, HEK293T cells were seeded in a 15cm

dish at ~40% confluency. The day of transfection, the culture media was changed to fresh DMEM plus 10% FBS. At the same

time, 3ml of Optimem reduced serummedia (Life Technologies) was mixed with 36ml of lipofectamine 2000, 3 mg of pMD2.G plasmid

(Addgene #12259), 12 mg of pCMV deltaR8.2 plasmid (Addgene #12263), and 9 mg of the gene fragment plasmid library. After 30 mi-

nutes of incubation, the plasmid/lipofectamine mixture was added dropwise to the HEK293FT cells. Supernatant containing viral par-

ticles was harvested 48 and 72 hours after transfection and concentrated to 1ml using Amicon Ultra-15 centrifugal filters with a cutoff

100,000 NMWL (Millipore). The viral particles were then aliquoted and frozen at -80C until further use.

Fitness screening in mammalian cell lines
Hs578T cells and MDA-MB-231 cells were cultured in DMEM media supplemented with 10% FBS. Cells were transduced with the

peptide coding gene fragment library at anMOI <.3 to ensure each cell received a single construct. Viral transduction was performed

in media containing 8mg/ml polybrene to improve transduction efficiency. For each cell line, screening was conducted with two bio-

logical replicates. 24 hours after transduction the cell culturemedia was changed back toDMEMwithout polybrene supplementation.

48 hours after transduction, the cell culturemedia was changed toDMEMcontaining puromycin to select for transduced cells. 2mg/ml

puromycin was used to select the Hs578T cells, and 3.5mg/ml puromycin was used to select the MDA-MB-231 cells. In the pilot

screens, more than 6,000,000 cells (from each cell line) were transduced to ensure greater than 1000-fold coverage of the library.

The cells were cultured for 14 days after transduction, with genomic DNA isolated via a Qiagen DNeasy Blood and Tissue Kit at

days 3 and 14. For the larger screens, the number of cells transduced was scaled up accordingly.

HTS library preparation and sequencing
Peptide coding gene fragments for each time point and replicate were then amplified from the genomic DNA using Kapa HiFi. The

fragments serve as their own barcodes for downstream abundance calculations. Illumina compatible libraries were prepared using

2.5ml of primers PEP_3 and PEP_4 (10mM) per 50ml reaction. For each sample (i.e. time point and replicate) from the pilot library, 10

separate 50ml PCR reactions with 4mg of gDNA each (40mg total) were performed to ensure adequate library coverage. Thermal

cycling parameters were identical to those used to amplify the gene fragment oligos, with the exception that the gDNA required

26 cycles to amplify. Ampure XP beads were used to purify all samples for sequencing. NEBNext Multiplexed Oligos for Illumina

(NEB) were then used to index the samples, and 150bp single end reads were then generated via an Illumina HiSeq2500. Greater

than 500-fold sequencing depth was used to ensure accurate abundance quantitation. For the larger libraries, the number of PCR

reactions was scaled to process 300mg of total gDNA per timepoint and replicate. The larger libraries were then sequenced with

100-bp paired end reads generated via an Illumina HiSeq4000.

Processing of sequencing files
To quantify peptide coding gene fragment relative abundance, the library definition text file (containing gene fragment names and

sequences) was first converted into Fasta format. This Fasta file was then used to build a Bowtie2 index file. For the pilot library,

raw FASTQ reads were directly mapped to the library index file via Bowtie2 (Langmead and Salzberg, 2012). For the expanded li-

braries paired end reads were first merged into a single FASTQ file via FLASH (Fast Length Adjustment of SHort reads)(Mago�c

and Salzberg, 2011). For both libraries, reads with insertion or deletion mutations were removed to eliminate spurious data resulting

from out of frame gene fragments, retaining 35-40% of total reads. Reads aligning to mutant peptides were filtered to retain only per-

fect matches (to prevent miscalling of mutant alleles). The resulting SAM files were then compressed to BAM files via SAMtools (Li

et al., 2009). Following this, the count and test modules in MAGeCK were used to determine the median normalized peptide coding

gene fragment abundances from the alignment files and individual peptide log fold change and depletion p-values.(Li et al., 2009,

2014). Following this, the R packages ‘‘Peptides’’ and ‘‘Biostrings’’ were used to determine peptide biophysical parameters such

as charge and hydrophobicity(Osorio et al., 2015; Pagès et al., 2017).

Calculation of amino acid level fitness scores
After generating the peptide count files, all downstream analysis was performed in R. For each amino acid residue in the overall pro-

tein structure, an amino acid level log fold changewas calculated by taking themean log2 fold change of all overlapping peptides with

greater than 30 raw counts in both replicates of the day 3 timepoint. Then, for every residue in the protein scaffolds, a normalized

fitness score was calculated by taking this mean log2 fold change value (x) and Z-normalizing to the library wide amino acid log2
fold change standard deviation (s) and mean (m).
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Fitness Score = Z =
x � m

s

To identify amino acid positions which were significantly depleted, a one tailed permutation test was performed. The approximate

permutation distribution of amino acid fitness scores was generated by randomly shuffling the labels of all gene fragments in the

screen. This shuffled data was subsequently used to recalculate the amino acid fitness scores. This resampling procedure was

then repeated N=10,000 times, with the P values for each amino acid position calculated by the following:

P =
1+

PN
i = 1½FitnessPermuted<FitnessObserved�

N permutations

These P values were then adjusted for multiple comparison testing by the Benjamini-Hochberg procedure(Benjamini and Hoch-

berg, 1995). The R packages ‘‘ggplot2’’, ‘‘hexbin’’, ‘‘ggrepel’’, ‘‘dplyr’’, and ‘‘RcppRoll’’ were used to generate publication quality fig-

ures(Wickham, 2011; ; Wickham et al., 2019).

Validating highly depleted gene fragments
All cell lines used were cultured in DMEM media supplemented with 10% FBS. The fitness impact of highly depleted peptides was

tested in an arrayed format via a WST-8 (Dojindo) cell growth assay. Highly depleted peptide coding gene fragments were synthe-

sized by Twist Biosciences, cloned directly into the pEPIP vector, and subsequently packaged into lentiviral particles. Cells were

transduced at an MOI of 4, and switched to puromycin containing media after 48 hours. Following 24 hours of puromycin selection,

1,500 cells were seeded per well as biological replicates in a 96 well plate. All experimental groups for Hs578T cells had n=4. For the

first set of validations in MDA-MB-231 cells, all experimental groups had n=4, with the exception of the GFP control which had n=8.

For the second panel of experiments (DICER1-552, etc.) all experimental groups had n=6. For HEK293T and MCF-7 cells all exper-

imental groups had n=8. 2mg/ml puromycin was used to select Hs578T and MCF-7 cells, while 3.5mg/ml puromycin was used to

select MDA-MB-231 and HEK293T cells. Cell growth was then quantified via absorbance at 450nm following 1.5hrs of incubation

with WST-8 reagent. A two-tailed P value was then calculated via an unpaired t-test with Welch’s correction.

Crystal violet viability measurements
In Figures 6D, S5C, and S5D, relative cell viability was determined via Crystal Violet staining. At the experimental endpoint cells were

washed once with PBS, and subsequently incubated in 50ml of crystal violet stain solution (.5%w/v Crystal Violet, 20% v/v methanol

in DI water) for 15minutes. Following this, excess crystal violet was removed from the plates via five immersions in 2 liters of DI water.

The plates were allowed to dry overnight, and the next morning the crystal violet stain was solubilized with 1% v/v SDS in DI water,

and relative cell numbers were quantified via absorbance at 595nm.

Engineering peptides for exogenous delivery
Peptides shown in Figure 5B were fused to an N-terminal cell penetrating motif via a (GS)3 linker sequence (Table S8) and chemically

synthesized by GenScript’s Custom Peptide Synthesis service at crude purity. For dose response experiments, cells were plated in

96 well plates (n=4) at 50% confluency and peptides were added at the indicated concentrations with cell viability quantified after

24hrs via the WST-8 assay. Cell viability was normalized to that of an untreated control on the same plate.

Co-immunoprecipitation
HEK293T cells were seeded in 6 well plates to be 75%confluent on the day of transfection. Transfections were performed with 1mg of

each indicated plasmid per well with 5ml of Lipofectamine 2000 according to the manufacturers protocol. For the RAF1-73 experi-

ments, 48 hours after transfection, cells were washed twice with ice cold PBS and lysed for 30 minutes in ice cold 400ml TBS buffer

containing.5% Triton x-100, 1mM EDTA, and Halt Protease Inhibitor Cocktail (Thermo Fisher 78429). The supernatant was then clar-

ified by centrifugation at 14,000G for 15 minutes. Following this, immunoprecipitation of FLAG tagged constructs was performed by

adding 300ml of the lysate to 20ml of packed anti FLAG agarose beads (Millipore Sigma A2220) prewashed with TBS. The remaining

100ml of lysate was stored at -80C for later analysis. The bead-lysate mixture was then mixed end over end at 4C for 2 hours. After

binding to the beads, the bead-protein complexes were washed three times with 1ml lysis buffer and eluted with 20ml of 2x SDS-

PAGE Laemmli loading buffer (BioRad 1610737). The EGFR-697 Co-IP experiments were performed identically, with the exception

that.75% NP-40 was used instead of Triton x-100 for cell lysis.

Western blotting
For the RAF1-73 Co-IP experiments proteins were first separated on 4-20%polyacrylamide gels (BioRad 4561094) under denaturing

conditions in Tris-Glycine-SDS (BioRad 1610732) for 1 hour at 100V. Following this, proteins were transferred to.2mm nitrocellulose

membranes (BioRad 1620112) for 30minutes at 100V in Tris-Glycine buffer (BioRad 1610734) containing 30%methanol. Membranes

were then blocked for 1 hour in TBS-T (Cell Signaling 9997) containing 5% non fat dry milk (BioRad 1706404XTU). The EGFR-697

experiments and EGFR expression level testing were performed identically, with the exception that the transfer voltage was reduced

to 30V and performed overnight at 4C. Primary antibodies were then added (diluted 1:1000 in TBS-T+ 5%milk) and incubated over-

night at 4C with gentle agitation. The following day the membranes were washed three times in TBS-T and incubated for 1 hour with
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HRP conjugated secondary antibodies (diluted 1:10,000 in TBS-T + 5%milk) at room temp. Themembranes were then washed again

three times with TBS-T and developed using SuperSignal West Pico Plus Chemiluminescent Substrate (Thermo Fisher 34577).

qPCR
Cells were plated the day before transduction at approximately 20% confluency. On the day of transduction, cells were transduced

with the appropriate lentiviral constructs at an MOI of 4 and allowed to grow for 72 hours. RNA was subsequently isolated with an

RNEasy Kit (Qiagen) with on column DNAse I treatment. Following this, cDNA was generated using the ProtoScript II First Strand

cDNA Synthesis Kit (NEB) and diluted up to 1:4 with nuclease-free water. The qPCR reactions were setup as: 2 ml cDNA, 400 nM

of each primer (See Table S5), 2X iTaq Universal SYBR Green Supermix (BioRad), with ultra pure water up to 20 ml. The qPCR

was performed using a CFX Connect Real Time PCR Detection System (Bio-Rad) with the following parameters: 95�C for 3 min;

95�C for 3 s; 60�C for 20s, for 40 cycles. All experiments were performed in duplicate and results were normalized against a house-

keeping gene, GAPDH. Relative mRNA expression levels (normalized to GAPDH) were determined by the comparative cycle

threshold (Ct) method.

Immunofluorescence
Cells were plated the day before transduction at approximately 20% confluency. On the day of transduction, cells were transduced

with the appropriate lentiviral constructs at an MOI of 4 and allowed to grow for 72 hours. Following this, the cells were washed twice

with PBS and fixed for 30minutes at room temperature with 4%paraformaldehyde. Cells were thenwashed three timeswith PBS and

blocked for 1 hour at room temp with PBS plus 5% Sea Block (Thermo Fisher PI37527X3) and.2% Triton x-100. The blocking buffer

was then aspirated and replaced with blocking buffer plus anti-FLAG primary antibody at a 1:500 dilution. The primary antibody was

then allowed to bind overnight at 4C. The following day, the cells were washed three times with PBS, and incubated for 1 hour with a

secondary anti-mouse IgG antibody conjugated to DyLight 488 (diluted 1:200). The cells were then washed three times with PBS and

subsequently imaged via fluorescence microscopy.

RNA-seq of highly depleted fragments
RNA sequencing was performed on Hs578T cells 6 days after transduction with lentivirus expressing gene fragments of interest. Two

biological replicates were sequenced for each experimental condition. Total RNA was isolated from cells via an RNEasy Kit (Qiagen)

with on column DNAse I treatment. An NEBNext Poly(A) mRNAMagnetic Isolation Module (E7490S) was then used to deplete rRNA.

Subsequently, an NEBNext Ultra RNA Library Prep Kit (E7530S) was used to generate Illumina compatible RNA sequencing libraries.

Sequencing was performed on an Illumina HiSeq4000, with paired end 100bp reads. Reads were aligned to the human reference

transcriptome via the STAR aligner, and differential gene expression was performed using DESeq2. Differential expression was

tested in reference to a control group transduced with lentivirus coding for GFP. Following this, the R package ‘‘fgsea’’ was used

to conduct GSEA pre-ranked analysis(Dobin et al., 2013; Love et al., 2014; Sergushichev, 2016). Genes were ranked via the shrunken

log fold change values outputted by DESeq2.

Network visualization
Network of protein-protein interactions was generated using publicly available data from Interactome INSIDER(Meyer et al., 2018).

Edges were drawn for all high confidence interaction interfaces calculated from PDB structures, homology models, and the ‘‘Very

High’’ and ‘‘High’’ interface potential categories from ECLAIR. Node color was based on fitness scores for each gene available

via DepMap CRISPR knockout screening. The CERES normalized gene effects were used to quantify the fitness impact of a given

knockout. Visualization was then performed in CytoScape(Smoot et al., 2011).

Computational modeling of peptide structure
To computationally predict 40-mer peptide structures, amino acid sequences for RAF1 and EGFR peptides were submitted to the

Robetta service, a protein structure prediction service hosted by the Baker Lab at University of Washington(Kim et al., 2004). TrRo-

setta, a deep learning-based structure prediction method, was used for all submissions to the server(Yang et al., 2020). Regions of

the protein of interest with available crystal structures from the RCSB Protein Data Bank were fragmented and used to evaluate the

folded structure of the computationally modeled fragments (see Table S7). PyMOL was then used to visualize the predicted struc-

tures aswell as the available crystal structures from the database. To evaluate the similarity between themodeled peptides and those

from the crystal structure, the TM score (template modeling score) was used(Zhang and Skolnick, 2004). To evaluate the TM-scores

of the fragments as a function of the secondary structure of the native protein, we extracted the structural annotations of the RAF1

and EGFRproteins from the PDB structure files available on RCSB.We then defined a fragment as containing a secondary structure if

it had a minimum overlap of 3 amino acids with the corresponding annotated regions. A minimum overlap of 3 was chosen as the

shortest annotated secondary structure in the native proteins is an alpha helix containing 3 amino acids. The confidence scores

of the predicted peptide structures were given as the predicted Local Distance Difference Test (lDDT) as determined by DeepAcc-

Net(Hiranuma et al., 2021). Validated lDDT baseline scores for proteins with the wrong fold are 0.20 with amean absolute deviation of

0.04(Mariani et al., 2013). The secondary structures of both the native structure and predicted structured were assigned through

STRIDE(Frishman and Argos, 1995).
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Recombinant peptide production
Recombinant production protocol was adapted from (Tropea et al., 2009)(Tropea et al., 2009). Recombinant MBP fusions and TEV

proteasewere cloned into the pETChampion vector (ThermoK630203) and expressed in T7 express E. coli (NEBC2566I). Constructs

were ordered as gBlocks from IDT and cloned directly into the vector via Gibson Assembly. To produce high yield MBP-peptide fu-

sions and TEV protease, a 10mL starter culture of E. coli was grown for 14 hours at 37C in TB media. This starter culture was then

used to induce a 1L culture of TB media. This culture was grown at 37C until an OD of.8, and then induced with.5mM IPTG. The cells

were subsequently grown overnight at 25C, following which the cells were pelleted and stored at -20C. To isolate recombinant pro-

teins, cells were first lysed via mechanical disruption with mortar and pestle in liquid nitrogen and resuspended in binding buffer

(50mL 50mM sodium phosphate, 200mM NaCl, 10% glycerol, and 25mM imidazole at pH 8.0). Cell lysate was then clarified via

centrifugation for 30 minutes at 20,000g. Following this, the soluble fraction of the lysate was applied via gravity flow to 5mL of a

pre-equilibrated Ni-NTA resin (Thermo 88221). The resin was subsequently washed with 15 column volumes of binding buffer,

and eluted with 50mM sodium phosphate, 200mM NaCl, 10% glycerol and 250mM imidazole at pH 8.0. Purified TEV protease

and the MBP-peptide fusions were subsequently dialyzed into cleavage buffer (50mM sodium phosphate, 200mMNaCl, pH 7.4) us-

ing Amicon 3kD MWCO centrifugal spin filters (Millipore UFC800324). Cleavage reactions were set up in cleavage buffer containing

2mg/mLMBP-peptide fusion,.2mg/mL TEV protease, and 1mMDTT (added fresh). This reaction was allowed to proceed overnight at

25C. The following day, the cleavage reaction was diluted 1:8 with binding buffer and applied over a pre-equilibrated Ni-NTA resin to

remove the TEV protease and MBP proteins (1mL resin per 5mg fusion protein). The flow through (containing purified peptide) was

subsequently dialyzed into PBS and concentrated to 5mg/mL.
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SUPPLEMENTAL FIGURE 1. Cloning strategy and MAPK focused screen overall analyses: 

(A) Detailed overview of library construction. Library was ordered as single stranded DNA oligos 

from Custom Array, and subsequently amplified via PCR to generate gene fragment libraries 

compatible with Gibson assembly cloning. This library was then cloned into pEPIP, with library 

coverage determined via high throughput sequencing. (B-C) Initial analysis for pooled pilot screen 

in Hs578T and MDA-MB-231 cells. The majority of peptides tested did not drop out during the 

fitness screen, although the distribution of peptide log fold change values is skewed towards 

depletion rather than enrichment. (D-E) The computed fitness scores for the amino acid positions 

showed good correlation between replicates in both Hs578T and MDA-MB-231. (r=.536 and 



r=.753 respectively). The majority of amino acid positions scored have no significant depletion, 

with a small subset having a detectable impact on fitness.  (Related to Figure 1) 

  



 

SUPPLEMENTAL FIGURE 2. Overview of MAPK focused peptide overexpression library: 

Peptide coding sequences derived from the WT coding sequences of key genes within the MAPK 

signaling pathway were synthesized as an oligonucleotide pool and subsequently cloned into a 

lentiviral overexpression vector. Proteins within the MAPK signaling pathway drive cellular 

proliferation through a cascade of physical interactions with proteins, nucleic acids, and other 

effector molecules within cells. (Related to Figure 1) 



 

SUPPLEMENTAL FIGURE 3. Library composition for secondary expanded cancer driver 

screens: (A) Table detailing all the peptides assayed in the expanded wildtype driver screen. 



Genes were sourced from Bailey et al. 2018 and Santarius et al. 2010 (Santarius et al., 2010), 

comprising diverse cancer associated signaling pathways and processes. (B) Table detailing all 

the peptides assayed in the mutant screen. Mutant genes cover a wide range of signaling 

pathways and molecular functions. (Related to Figure 2-4) 

 

 

  



   

SUPPLEMENTAL FIGURE 4. Quality control metrics and amino acid level fitness plots for 

expanded cancer driver screens: (A) Computed per position amino acid scores had good 

correlation between replicates (Pearson correlation =.917), with reproducibility exceeding that of 

the pilot screen. (B) Replicate correlation for the mutant peptide screen. Screen shows high 

degree of reproducibility (Pearson correlation = .859).(C) The fitness score for the most 

deleterious residue in each full-length protein is plotted for each gene. GFP and HPRT1 controls 

show little effect on cell fitness across protein structure. (D) Per position fitness scores for RASA1, 



RRAS2, FLT3, DICER1, RB1, and ERBB4. Select PPIs are annotated on the plots, corresponding 

to regions of significant depletion (E)  Plot of wild type (gray bars) and mutant amino acid fitness 

scores (points) for PIK3CA, BRAF, and SMAD4. Dots indicate mutant amino acid fitness scores 

at the specified positions. Dots labeled in red were significantly (BH adjusted P value < .05) 

depleted in the pooled screen. (Related to Figures 2-4) 

  



  

SUPPLEMENTAL FIGURE 5.  Validation of hit peptide activity: (A) Growth kinetics in Hs578T 

for individual peptide variants shown in Figure 3A. Cell growth was quantified via the WST-8 

proliferation assay. Results are from the same experiment split into multiple plots for ease of 

visualization, hence identical GFP controls for each peptide group. Arrayed validation of 

lentivirally delivered gene fragments derived from KRAS mutants is also shown. KRAS61K mutant 

peptides predicted to be deleterious to cell growth significantly inhibited growth (P<.05, as 

measured at the 7 day time point). (B) Growth kinetics in MDA-MB-231 for individual peptide 

variants shown in Figure 3A. Cell growth was quantified via the WST-8 proliferation assay. 

Results are from the same experiment split into multiple plots for ease of visualization, hence 

identical GFP controls for each peptide group. Arrayed validation of lentivirally delivered gene 

fragments derived from KRAS mutants is also shown. KRAS61K mutant peptides predicted to be 

deleterious to cell growth significantly inhibited growth (P<.05, as measured at the 7 day time 

point). (C) Significantly enriched peptides identified from the larger screen in MDA-MB-231 cells 

were tested in an arrayed format to validate the growth advantage phenotype. Cells were 

transduced with lentivirus to overexpress each construct, selected with puromycin and 

subsequently seeded into a 96 well plate to quantitate relative growth rates. After seven days the 

relative cell numbers for each construct were then measured via crystal violet staining. Bar plots 

show mean with error bars showing standard deviation, statistical tests comparing cell growth 



relative to GFP control (*P<.05,**P<.01,***P<.001,****P<.0001). (D) Effect of varying peptide 

length on cell fitness. Peptides centered on the previously identified hits RAF1-73 and EGFR-697 

were overexpressed via lentiviral transduction in MDA-MB-231 cells. After 7 days of competitive 

growth, relative cell numbers were quantified via crystal violet staining. Bar plots show mean with 

error bars showing standard deviation, statistical tests comparing cell growth relative to GFP 

control (*P<.05,**P<.01,***P<.001,****P<.0001). (Related to Figure 3) 

 

  



 

SUPPLEMENTAL FIGURE 6. Recombinant production of peptides for exogenous delivery: 

Peptide production protocol to facilitate translation of peptide hits. Tagless peptides conjugated 

to cell penetrating protein TAT were produced at high purity via fusion to Maltose Binding Protein 

(MBP), and subsequent cleavage by TEV protease. The protocol makes use of no specialized 

instruments, and is easily adaptable to alternative cell penetrating motifs or peptide constructs. 

Ladder has bands marking 10,15,20,25,37,50,75,100,150,and 250kD. (Related to Figure 5) 

  

 



 

SUPPLEMENTAL FIGURE 7. Peptide structural analysis: (A) Structural alignments of 

predicted peptide structures to experimentally resolved crystal structures of the full length protein 

(modeled using Tr Rosetta – STAR Methods). Shown are two hit peptides (RAF1-73 and EGFR-

697). (B) Template modeling scores (TM-Score) for all peptides derived from RAF1 and EGFR. 

We comprehensively modeled 957 total peptides derived from RAF1/EGFR which had available 

overlapping crystal structures on RCSB (see Supplemental Table 7). We found that all modeled 

peptides had structural similarities with the WT structure greater than random chance (TM-score 



>.17), and over 75% of the modeled peptides in both proteins had approximately the same fold 

as the WT structure (TM-score >.5). (C) Confidence scores for the predicted RAF1 peptide models 

outputted by TrRosetta. Confidence scores shown are the predicted Local Distance Difference 

Test (lDDT) values for the protein as determined by DeepAccNet(Hiranuma et al., 2021). (D) 

Confidence scores for the predicted EGFR peptide models outputted by TrRosetta. Confidence 

scores shown are the predicted Local Distance Difference Test (lDDT) values for the protein as 

determined by DeepAccNet(Hiranuma et al., 2021). (E) Predicted peptide TM-Score as a function 

of the secondary structure of the full length protein. Peptides were binned into groups based on 

their overlap (>3 amino acids minimum) with structural elements on the full length protein. (F) 

Shown are 2 representative low similarity folders (TM-Scores .305, and .347 respectively) derived 

from RAF1. Secondary structure of the full length protein is largely retained, however the 

orientation of secondary structural elements is different from the full length WT. (Related to STAR 

Methods) 

 

 

  



 

SUPPLEMENTAL TABLE 5. Primers (Related to Figure 1-2, STAR methods) 

Name Description Sequence 

PEP_01 

Used to amplify initial oligo pool and 

individually synthesized cancer driver gene 

fragments for cloning. Additionally used for 

qPCR of overexpressed peptides. 

GGCTAGGTAAGCTTGATA

TCGGCCACCATG 

PEP_02 

Used to amplify initial oligo pool and 

individually synthesized cancer driver gene 

fragments for cloning. Additionally used for 

qPCR of overexpressed peptides. 

GGCGGCACTGTTTAACAA

GCCCGTCAGTAG 

PEP_03 

Used to amplify cancer driver gene 

fragments for high throughput sequencing. 

ACACTCTTTCCCTACACGA

CGCTCTTCCGATCTGCTT

GATATCGGCCACCATG 

PEP_04 

Used to amplify cancer driver gene 

fragments for high throughput sequencing. 

GACTGGAGTTCAGACGTG

TGCTCTTCCGATCTCACT

GTTTAACAAGCCCGTCAG

TAG 

GAPDH

_F Used for qPCR of overexpressed peptides. 

ACAGTCAGCCGCATCTTC

TT 

GAPDH

_R Used for qPCR of overexpressed peptides. 

ACGACCAAATCCGTTGAC

TC 

EF1a_s

eq 

Used for Sanger sequencing of constructs 

cloned into peptide expression vectors. 

TTCTCAAGCCTCAGACAG

TGG 

 

 

  



SUPPLEMENTAL TABLE 6. Peptides Validated via Lentiviral Overexpression (Related to 

Figure 3) 

Gene Name Amino Acid Sequence 

BRAF-379 MIDDLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQK 

BRAF-380 MDDLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQKS 

EGFR-697 MEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGE 

EGFR-704 MLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVA 

FBXW7-461 MTSTVRCMHLHEKRVVSGSRDATLRVWDIETGQCLHVLMGH 

FBXW7-512 MRRVVSGAYDFMVKVWDPETETCLHTLQGHTNRVYSLQFDG 

RAF1-73 MRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL 

RAF1-78 MLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTD 

KRAS61K-24 MIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGKEE 

KRAS61K-28 MFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGKEEYSAM 

KRAS61K-34 MPTIEDSYRKQVVIDGETCLLDILDTAGKEEYSAMRDQYMR  

DICER1-552 MRARAPISNYIMLADTDKIKSFEEDLKTYKAIEKILRNKCS 

KRAS-143 METSAKTRQGVDDAFYTLVREIRKHKEKMSKDGKKKKKKSK 

MDM2-25 METLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLGQYIMTK 

RASA1-468 MKDAFYKNIVKKGYLLKKGKGKRWKNLYFILEGSDAQLIYF 

AKT1-115 MEEEMDFRSGSPSDNSGAEEMEVSLAKPKHRVTMNEFEYLK 

CCND1-167 MKMPEAEENKIIRKHAQTFVALCATDVKFISNPPSMVAAG 

NOTCH1-626 MLCFCLKGTTGPNCEINLDDCASSPCDSGTCLDKIDGYECA 

 

  



SUPPLEMENTAL TABLE 7. Crystal Structures (Related to STAR Methods) 

Protein 

PDB Crystal 

Structure ID DOI 

EGFR 

5JEB,1M14, 

1XKK, 3QWQ 

10.1038/nchembio.2171, 

10.1074/jbc.M207135200, 

10.1158/0008-5472.CAN-04-

1168, 10.1016/j.str.2011.11.016 

RB1 2QDJ 10.1016/j.molcel.2007.08.023 

RAF1 1GUA,7JHP,70MV 

10.1038/nsb0896-723, 

10.2210/pdb7JHP/pdb, 

10.1038/nature08833 

 

  

http://dx.doi.org/10.1038/nchembio.2171


SUPPLEMENTAL TABLE 8. Chemically Synthesized Peptides (Related to Figure 5) 

Name Amino Acid Sequence 

TAT-EGFR-697 GRKKRRQRRRPPQGSGSGSMEAPNQALLRILKETEFKKIKVLGSGAFG

TVYKGLWIPEGE 

TAT-RAF1-73 GRKKRRQRRRPPQGSGSGSMRNGMSLHDCLMKALKVRGLQPECCA

VFRLLHEHKGKKARL 

TAT-FLAG GRKKRRQRRRPPQGSGSGSDYKDHDGDYKDHDIDYKDDDDK 

TAT-RASA1-468 GRKKRRQRRRPPQGSGSGSMKDAFYKNIVKKGYLLKKGKGKRWKNL

YFILEGSDAQLIYF 

TAT-MDM2-25 GRKKRRQRRRPPQGSGSGSMETLVRPKPLLLKLLKSVGAQKDTYTMK

EVLFYLGQYIMTK 

 

 

  



 

SUPPLEMENTAL TABLE 9. Overall Cost Analysis (Related to STAR Methods) 

Item Vendor Price ($) 

Oligonucleotide Synthesis (~12,000 

constructs) 
Custom Array 2400 

Cell Culture Media (DMEM + FBS 

+Trypsin) 
Thermo Fisher 

(10566016,16140071,25200056) 
215 

Genomic DNA Isolation Kit (8 columns) Qiagen (69504) 28 

Polymerase for Sequencing Library 

Construction (1mL) 
Kapa HiFi HotStart Ready Mix (Roche 

KK2602) 
112 

AMPure XP Beads (1mL) Beckman (A63881) 20 

PE100 Sequencing (2 time points, 2 

replicates per time point) 
Core Facility (NovaSeq S4, 

50,000,000 reads) 
140 

Total NA 2915 
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