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SUMMARY
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional
screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of
RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell
RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally
distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthog-
onal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recur-
rence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like
but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response
and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently con-
tains RUNX1-bindingmotifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to
predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the
landscape of phenotypes reachable by missense mutations.
INTRODUCTION

Cancer is associatedwith the progressive loss of cell identity and

gain of signals promoting inappropriate survival and prolifera-

tion. Somatic mutations, particularly in oncogenes and tumor

suppressors, alter cellular signaling to promote these changes

during tumor development and progression.1–4 Complicating

matters more, different mutations in the same gene can have

different associations with prognosis and therapeutic response.

For example, KRAS G13-mutant colorectal tumors, but not G12,

are sensitive to cetuximab treatment.5 In lung cancer, the G13

mutation is associated with shorter overall survival than the

G12 mutation.6 In breast cancer, TP53 mutations within DNA-

binding motifs have worse prognosis than those outside, but

within the motifs, codon 179 mutation and the R248W substitu-

tion show significantly poorer prognosis than others.7 This high-

lights the need to develop strategies for studying perturbations

at a finer scale than gene knockout or knockdown.

High-throughput mutagenesis is a powerful new tool to probe

varying consequences of amino acid substitutions across the

length of a protein; however, it is currently limited to specific

functional readouts, such as target protein abundance8 or func-

tional assays.9–11 Studying the effects of genetic perturbations
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on cellular programs and fitness has been challenging using

traditional pooled screens. Approaches such as scalable func-

tional screening by sequencing (SEUSS)12 and Perturb-seq13

measure the transcriptional consequences of perturbations

ranging fromwhole-gene knockout to amino acid substitutions14

in single cells, making it possible to distinguish mutations at the

level of cellular programs relevant to cancer progression. SEUSS

has been used to study the consequences of functional domain

deletions and hotspot mutations to MYC in human pluripotent

stem cells.12 A Perturb-seq application of driver mutations in

KRAS revealed that their impact spans a continuum of function

not predicted solely by frequency in cancer cohorts.14 While

providing greater functional insight, these sequencing-based

methods are not yet scalable to exhaustive mutagenesis, neces-

sitating the selection of target mutations.

Individual proteins often have multiple functions, mediated

through interaction with different binding partners. Somatic

mutations in driver genes are overrepresented at interaction in-

terfaces,15–19 suggesting that examining the consequences of

perturbing distinct protein interfaces could provide a useful

abstraction of phenotypic space reachable by individual amino

acid substitutions. To explore this hypothesis, we focused on

the Runt-related transcription factor 1 (RUNX1), part of the
uly 23, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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core-binding factor (CBF) heterodimeric complex, consisting of

the DNA-binding RUNX1 and non-DNA-binding CBFB proteins.

RUNX1 is characterized by a highly conserved 128-amino acid

residue Runt domain, responsible for both binding to DNA20–23

and heterodimerization with CBFB,23–25 which increases its

DNA-binding affinity26–30 and occurs at distinct, non-overlapping

sites within the domain.24 A variety of transcriptional co-regula-

tory proteins also bind RUNX1 to activate or repress transcrip-

tion,31–38 some through the Runt domain,39–43 suggesting that

they may compete with one another for RUNX1 interaction.42

RUNX1 is required for definitive hematopoiesis.20,44–46 It plays

an important role in T lymphocyte development and lineage

specification47 and megakaryocyte differentiation,47,48 and it is

implicated in erythroid cell differentiation.46,49,50 Mutations in

RUNX1 are frequently observed in hematopoietic disorders

such as acute myeloid leukemia (AML), lymphoid leukemias,

myelodysplasias (MDSs), and blast crisis chronic myelogenous

leukemia (CML),51–54 and less commonly observed in breast

cancer.55,56 In addition, RUNX1 haploinsufficiency is responsible

for familial platelet disorder with predisposition to AML.57–59

As RUNX1 is a pioneer transcription factor and master regu-

lator implicated in multiple cancer types, we hypothesized that

mutations affecting its interactions with transcriptional co-fac-

tors would manifest as changes to expression of RUNX1 target

genes, resulting in functional diversity in cancer. We designed

a library of 117 variants, with the potential to perturb distinct

RUNX1 interactions and implicate different aspects of the

RUNX1 regulon, including wild-type (WT) and loss-of-function

(LoF) controls as a frame of reference for functional impact. We

applied SEUSS to overexpress the library in myelogenous leuke-

mia cells and analyzed single-cell transcriptional readouts to

identify functionally distinct groups of RUNX1mutations, charac-

terize their effects on cellular programs, and study implications

for cancer.

RESULTS

An interface-guided Perturb-seq assay for coding
variant phenotyping of RUNX1
While somatic mutations in RUNX1 span the entire gene, the

most recurrent mutations cluster in the Runt domain. We used

protein structures (Figure 1A) and template-based docking60 to

identify 83 amino acid residues in the Runt domain involved in

physical interactions with at least one of 33 protein partners

with structural data (Figures 1B and S1) (STAR Methods). These

were used to design an open reading frame (ORF) mutation

library to assess the impact of perturbation of various RUNX1

interactions. We used the RUNX1B isoform, the canonical
Figure 1. Interface-guided Perturb-seq assay for coding variant pheno

(A) The 3D crystal structure of transcription factor CBF, consisting of RUNX1Runt

(PDB: 1h9d).

(B) Amino acid residue map of RUNX1 Runt domain (columns). In each row, RUNX

highlighted by black. Rows are hierarchically clustered. Top: residue 3D location

damaging mutations targeting each residue. Color darkness indicates mutation

(C) Lentiviral ORF vector containing RUNX1 variant (WT, mutated, or GFP) and 1

(D) Experimental and computational overview: ORF variant library design, transdu

12 selected elements; computational analysis.
sequence in UniProt,61 but we provided mappings to the

RUNX1C isoform, more commonly used by mutation databases

(Table S1).

For each of the 83 residues, we identified amino acid substitu-

tions that would maximally perturb function based on variant

effect scoring tool (VEST) pathogenicity scores62 and FoldX

folding free energy predictions,63 while prioritizing substitutions

observed in tumors from the Catalogue Of Somatic Mutations

In Cancer (COSMIC).64 To provide a frame of reference for

functional impact, we included WT RUNX1 and LoF control con-

structs (RUNX1 replaced with the GFP), 17 negative controls

(expected to be indistinguishable fromWT) consisting of 10 silent

and 7 predicted neutral (based on VEST scores) mutations, and

10 positive controls (expected to mimic LoF) comprising 5 trun-

cating and 5 core mutations. To evaluate the mutation combina-

torial impact, we generated 5 combinations, bringing the total to

117 library elements (Table S1).

We used SEUSS12 to overexpress themutant RUNX1 library in

K562, a CML cell line with WT RUNX1.65 We generated a clonal

K562 cell line with doxycycline-inducible CRISPRi knockdown of

endogenous RUNX1 (iRUNX1-KD K562) and measured 67%

reduction in RNA and 72% reduction in protein expression by

qRT-PCR and western blot, respectively (Figures S2A–S2C).

Our RUNX1 variant ORF overexpression library was generated

from a lentiviral vector modified to contain a hygromycin resis-

tance gene downstream of the EF1a promoter, followed by a

P2A peptide motif, the RUNX1 variant (WT, mutated, or GFP

as LoF control), and a 12-bp barcode sequence unique to

each variant for identification after single-cell transcriptome

sequencing (Figure 1C). The iRUNX1-KD K562 cells were trans-

duced with the pooled variant library at a low (�0.3) MOI to

ensure that each cell received a single construct and then

were grown with hygromycin to select those carrying constructs.

Cells were split into two populations, one treated with doxycy-

cline (dox) to induce repression of endogenous RUNX1 (dox),

the other not (nodox). At day 7 post-transduction, single-cell

RNA libraries were prepared and sequenced, with the remaining

cells being maintained until day 14 for fitness screening (Fig-

ure 1D). We confirmed RUNX1 protein overexpression for the

WT control construct relative to the GFP/LoF construct as well

as the dox-inducible repression of endogenous RUNX1 protein

in both contexts via western blot (Figures S2D and S2E) (STAR

Methods).

We generated single-cell transcriptional profiles for 86,120

cells using 10X Genomics Chromium,66 48.4% of which con-

tained detectable variant barcodes assigned to a single variant

only. After quality control (QC) filtering, we recovered 40,522

high-quality single-variant cells covering 112 of 117 assayed
typing of RUNX1

domain (purple) and CBFB (blue), interacting with DNA (yellow and pink strands)

1 interface residues involved in interaction with each protein partner (rows) are

annotations (core, intermediate, surface), VEST and FoldX scores of the most

impact: damaging (VEST) or destabilizing (FoldX).

2-bp variant-specific barcode sequence.

ction, scRNA-seq of all 117 library elements, bulk RNA-seq, and ATAC-seq of
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variants for downstream analysis (STAR Methods). A total of

20,878 cells were from the pool treated with dox, and although

significantly correlated (r = 0.96, p = 1.3e�18), they showed

larger effect sizes associated with RUNX1 mutations relative to

cells still expressing endogenous RUNX1 (nodox) (Figure S3).

Therefore, we focused our remaining analysis on the 20,878

high-quality cells without endogenous RUNX1 (median 136 cells

per variant; Figure S4A; Table S2). LoF (361 cells) and positive

control variants (median 244 cells per variant) generated signifi-

cantly higher numbers of cells in comparison to WT (127 cells)

and negative controls (median 63 cells per variant) (r = 0.85,

p = 7.5e�9) (Figure S4B), consistent with reports that reduction

or loss of RUNX1 activates cell proliferation,67,68 although this

may differ in other contexts.69,70 Mutation combinations gener-

ated even more cells than the LoF control (Figure S4B).

Unsupervised transcriptome-based clustering of cells
and variants
We reasoned that variant function could be assessed via tran-

scriptome-based clustering of cells, such that cells harboring

variants with similar effects on RUNX1 targeting group together,

while those with distinct effects separate. Here, cells carrying the

WT or LoF control constructs provide a frame of reference for

designating functional impact, and cells clustering away from

the WT are considered to be harboring ‘‘functional’’ variants. Af-

ter regressing out cell-cycle effects (Figures S5A and S5C), we

performed unsupervised clustering of single-cell gene expres-

sion profiles, which supported three clusters (Figure 2A). Cluster

1 harbored the majority of cells expected to be functionally WT

(WT construct: log(odds ratio [OR]) = 1.69, p = 7.3e�19, and

negative controls: log(OR) = 2.69, p = 6.7e�301), whereas LoF

construct and positive control mutations were most enriched in

clusters 2 and 3 (LoF: log(OR) = 0.28, p = 0.01, positives:

log(OR) = 0.34, p = 9.6e�15, for cluster 2; LoF: log(OR) = 0.87,

p = 2.2e�15, positives: log(OR) = 0.88, p = 2.5e�86 for cluster

3) (Figures 2B and S5D). Although cells containing perturbation

variants were more enriched in cluster 1 overall (log(OR) =

0.62, p = 3.3e�82; Figure S5D), certain variants concentrated

in cluster 2 (e.g., S114L, log(OR) = 1.28, p = 4.7e�7) or 3 (e.g.,

T169I, log(OR) = 1.39 p = 1.3e�15) (Figure S5E; Table S3).

Next, we performed unsupervised clustering of variants using

their mean gene expression profiles across cells, which again

suggested three groups (Figure 2C). Group I included the WT

construct and all negative control variants. Group III contained

the LoF construct, and the majority of positive controls (8 of

10) expected to generate a non-functional protein (Figure 2D).

While most perturbation variants also fell into these groups (I:

41 variants, III: 24 variants), reflecting expression profiles similar

to WT or LoF, the separate assignment of 14 variants to group II

suggested a partial loss of RUNX1 function, distinct from LoF or

WT activity. Accordingly, we labeled variants in these groups as

‘‘WT-like,’’ ‘‘LoF-like,’’ and ‘‘hypomorphic’’ (Figure 2E). Revisit-

ing the single-cell space (Figure 2F), cells carrying WT-like and

hypomorphic variants largely separated into clusters 1 (log(OR) =

3.07, p < 2.2e�308) and 2 (log(OR) = 0.74, p = 9.9e�89), whereas

cells harboring LoF-like variants concentrated in both clusters

2 (log(OR) = 0.85, p = 5.7e�172) and 3 (log(OR) = 2.22,

p < 2.2e�308) (Figure 2G).
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To further investigate hypomorphic variants, we quantified dif-

ferences in the distributions of single-cell transcriptional profiles

of each variant against WT or LoF controls with Hotelling’s

T-squared test statistic (T2 score),71 where higher scores indi-

cate a higher deviation from the control (STAR Methods). This

statistical analysis revealed that all WT-like variants are indistin-

guishable from the WT control via small T2 scores relative to WT

(T2WT), but high scores relative to LoF (T2LoF) (p < 0.05). Similarly,

all LoF-like variants are indistinguishable from the LoF control via

small T2LoF and high T2WT scores (p < 0.05). Hypomorphic vari-

ants are significantly different from both controls (p < 0.05, Fig-

ure 2H; Table S2), suggesting transcriptional changes that are

not simply an intermediate between LoF and WT. This is

supported by differential expression analysis, where 48 of 141

(or 107 of 232) differentially expressed genes between hypomor-

phic versusWT control (or LoF) were not differential between the

two controls, suggesting gain of new activity (Figure S6). Further-

more, variant fitness positively correlated with T2WT scores

(r = 0.85, p = 1.2e�32) and negatively with T2LoF (r = �0.77,

p = 8.4e�24), demonstrating that LoF-like variants result in

increased fitness and larger cell numbers (Figures 2I and S4C;

Table S2).

Gene expression programs distinguish RUNX1 variants
Hierarchical clustering of RUNX1 variants once again sepa-

rated WT-like, LoF-like, and hypomorphic variants (Figure 3A).

Although variants clustering with LoF control would most likely

destabilize RUNX1 or interfere with its DNA binding, we did not

want to assume that all hypomorphic variants would have the

same effect on RUNX1 activity. Therefore, hypomorphic vari-

ants were further partitioned into three sub-groups based on

the dendrogram (hypomorphic-I, -II, and -III), demonstrating a

progression of expression changes (Figure 3A). The majority

of variance in expression fell along the WT-like-to-LoF-like

axis (PC1: 31.6%) (Figure 3B), correlating with T2WT (r = 0.90,

p < 2.2e�16), and fitness scores (r = 0.93, p < 2.2e�16); while

PCs 2–4 (3.4%, 3.1%, and 2.6%, respectively) pointed to

transcriptomic effects that are more specific to hypomorphic

variants. In particular, hypomorphic-II variants displayed larger

T2WT and T2LoF scores (Figure 3C), unlike the fitness progres-

sion (Figure 3D).

LoF-like variants produced higher FoldX and VEST scores

(Figures 3E and 3F). Kernel density estimates of single-cell uni-

form manifold approximation and projection (UMAP) embed-

dings for variant groups demonstrated that the majority of cells

belonging to each assigned phenotype occupy discrete regions

in UMAP, although hypomorphic distributions also harbor cells

that overlap with regions dominated by WT-like and LoF-like

cells (Figure 3G). This could be due to small differences in the

expression of the mutant construct, variability in knockdown of

endogenous RUNX1 expression, stochasticity in the measure-

ment of gene expression, or even variable penetrance at the

cellular level due to buffering built into cellular systems, such

as stress response pathways.

We identified gene clusters with similar expression patterns

across variant groups by (1) hierarchical clustering and (2) non-

negative matrix factorization (NMF) (CoGAPS72) of the top

2,000 variable genes. Functional enrichment analysis of 10



Figure 2. Unsupervised analysis of RUNX1 variant transcriptional effects informs WT-like, LoF-like, and hypomorphic variants

(A and B) UMAP embedding of single cells, colored by (A) unsupervised clusters and (B) variant classes. Cell-cycle effects are regressed out.

(C and D) UMAP embedding of variants, constructed from mean expression across cells, colored by (C) unsupervised clusters and (D) variant classes.

(E and F) UMAP embedding of (E) variants or (F) single cells carrying those variants, colored by variant functional designations (phenotype: WT-like, LoF-like, or

hypomorphic) for unsupervised clusters in (C).

(G) Enrichment of single cells with assigned phenotypes from (F) for unsupervised clusters in (A). Positive and negative values indicate enrichment and depletion,

respectively.

(H) Variant T2 scores when compared to WT (x axis) or LoF (y axis) controls.

(I) Variant fitness scores from 2 biological replicates (R1: replicate 1, R2: replicate 2; Pearson’s r = 0.94, p = 5.3e-55).
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gene programs by hierarchical clustering (Figures 3A and S7;

Tables S4 and S5) and 7 transcriptional patterns by NMF (Fig-

ure S8; Table S6) showed high concordance with some orthog-

onal results. WT-like variants displayed immune system and cell-

cycle-related functions (patterns 4 and 1), positive regulation

of T cell lineage commitment, proliferation, and activation

specifically (program 4), consistent with the role of RUNX1 in he-

matopoietic lineage commitment and differentiation.20,44,69,73,74

LoF-like variants upregulated heme biosynthesis (program 1

and pattern 3), angiogenesis (program 2), and extracellular ma-
trix regulation (program 3), which is consistent with a shift to-

ward erythroid differentiation49,50 and hematological malig-

nancies,73,75 with loss of RUNX1 activity. They also displayed

enrichment for stress-response genes (patterns 6 and 7)—endo-

plasmic reticulum stress specifically—possibly suggesting that

destabilizing RUNX1 mutations could trigger an unfolded

protein response. Hypomorphic variants showed a higher

expression of genes associated with tau protein kinase activity

(program 9), suggested to link nerve growth factor (NGF) to acti-

vation of mitogen-activated protein kinase signaling,76 but lower
Cell Reports 43, 114436, July 23, 2024 5
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expression for neuronal plasticity (program 7), suggesting effects

on the less-known functions of RUNX1.77–79 They were also en-

riched for G1/S cell cycle and senescence (pattern 2), which

could indicate G1 phase arrest for some hypomorphic variants,

and interleukin (IL) and cytokine signaling (pattern 5), suggesting

a shift toward an inflammatory state for some of the cells.41,80–83

LoF-like variants significantly target DNA binding, while
hypomorphic variants favor protein interfaces
We noted local clustering of variants with similar functional effect

along the RUNX1 Runt domain amino acid sequence (Figure 4A),

and the three-dimensional (3D) structure, especially in the DNA-

binding region (Figure 4B). We identified 11 amino acid residues

that directly contact DNA (STAR Methods), among which 8 are

perturbed in our mutation library (R80G, R135G, R139Q,

R142S, G143R, T169I, V170M, and R174Q) (Figure 4C), and

these are significantly enriched for functional (LoF-like or hypo-

morphic) vs. WT-like impact (OR = 8.82, p = 0.025; Figure 4D),

consistent with reports that mutations to DNA-contact residues

severely impair RUNX1 function.24,59,84,85 Transcriptome-based

(T2) scores recapitulated experimental findings (Table S7); six

mutated positions scoring as LoF-like disrupted DNA binding

in alanine-scanning mutagenesis assays,23,25 while the position

with WT-like impact (V170M) did not, and the position with a

hypomorphic mutation (G143R) perturbed the Runt domain

fold instead.23

In comparison, for 19 residuesmediating the CBFB interaction

(Figure 4C; STAR Methods), enrichment for functional effects is

weaker; only 10 mutations are functional, while 9 are WT-like

(OR = 1.27, p = 0.79; Figure 4D). Seven involve residues exper-

imentally shown to not perturb CBFB binding23,24,86 (Table S7),

which is in line with our WT-like designations. Moreover, our

assay identified the N109Y mutation of residue 109, a hotspot

for CBFB heterodimerization,86 as LoF-like. Notably, mutations

interrupting CBFB binding but not DNA have been suggested

to produce hypomorphic alleles,84 and one such case was iden-

tified by our assay (hypomorphic T149A). In fact, of 14 hypomor-

phic variants found, 4 occurred at the CBFB interaction interface,

with only 1 at the DNA. Overall, transcriptome-based scores

reflect the difference in sensitivity to perturbations of protein-

versus DNA-binding interfaces.84

Comparing coding variant Perturb-seq with recurrence
in cancer
In principle, mutations that improve fitness would be selectively

more advantageous for tumor cells and show higher recurrence

across patients. While we observed significant overrepresenta-
Figure 3. Mapping phenotypic consequences of RUNX1 variants with

(A) Hierarchical clustering of variants (columns: 5 clusters) bymean expression pro

are ordered by increasing T2WT scores. Gene expression values are Z scored.

(B) Top 5 PCs of variants. Rows are scaled to have a mean of zero and unit varia

(C) Variant T2 scores when compared to the WT (circle) or LoF (cross) control, co

WT-like and LoF-like variants.

(D) Variant mean fitness scores.

(E and F) Variant (E) FoldX and (F) VEST scores. Variants that could not be scored

with an X.

(G) Kernel density estimates comparing UMAP embedding of single cells belong

WT (green shade) or LoF controls (purple shade).
tion of functional mutations in cancer (COSMIC64) (OR = 3.05,

p = 0.022; Figure 4E), frequency only weakly correlated with

fitness (r = 0.33, p = 1.2e�3) and not with T2WT scores

(r = 0.15, p = 0.14; Figure 4F). This suggests that while recurrence

is a strong indicator of functional impact, it does not distinguish

differences in the magnitude of effect well, highlighting the

importance of transcriptomic studies to assess variant impact.

Notably, the top three most frequent mutations (R174Q,

R139Q, and R135G) target DNA-contact residues and display

LoF-like impact, while the fourth (S114L) targets CBFB heterodi-

merization and is hypomorphic (Figure 4G). Furthermore, the top

hotspotmutation (R174Q) is known to contribute the greatest en-

ergy to DNA binding.23 Of the RUNX1mutations shared between

our assay and COSMIC, the majority occurred in hematopoietic

malignancies (n = 104), followed by breast cancer (n = 10), uri-

nary tract (n = 5), and large intestine (n = 4), where approximately

79.6% are LoF-like and 14.6% are hypomorphic (Figure 4H).

We revisited RUNX1mutations in a larger set of hematopoietic

malignancies from the Munich Leukemia Laboratory (MLL)

(STAR Methods), which contains 717 tumors with somatic

missense mutations in the Runt domain, 201 tumors of which

capture 24 unique variants present in our library (Figure 4I). We

again observed a bias for functional mutations (OR = 11.03,

p = 7.6e�5; Figure 4E), but even higher than in COSMIC, consis-

tent with the significance of RUNX1 in AML. The same mutations

had the highest frequencies (R174Q, R139Q, R135G, and

S114L)87 (Table S2). In contrast, we see a trend toward the

depletion of functional variants in non-cancer genomes from

the gnomAD database88: 4 functional vs. 8 WT-like (OR = 0.52,

p = 0.37; Figure 4E), and 3 of the functional variants were anno-

tated as pathogenic in ClinVar.87

Transcriptome-based phenotyping informs variants of
uncertain significance
Germline RUNX1 variants are associated with familial platelet

disorder, characterized by an increased risk of developing

myeloid malignancies.57,89,90 However, information about the

consequences of many are lacking, leading to a variant of uncer-

tain significance (VUS) designation, which presents a challenge

for clinical interpretation.91 We obtained 148 unique RUNX1

Runt domain missense mutations from ClinVar,87 24 of which

overlap with our library, with 1 benign, 7 pathogenic, and 16

VUS germline significance annotations (STAR Methods). Our

transcriptome-based profiling recapitulated the 8 benign/patho-

genic ClinVar variants with 100% accuracy (Figure 4J; Table S2),

suggesting that transcriptomic labels can be used to reevaluate

VUSs. Of the 16 present in our library, we identified 9 as WT-like,
transcriptomic analysis

files of top 2,000 variable genes (rows: 10 clusters). Variant dendrogram leaves

nce.

lored by phenotypes. Dotted line equals 178.79, median of T2WT scores for all

(WT and LoF controls, or combination mutations) are grayed out and marked

ing to each assigned phenotype (density lines) and to cells overexpressing the

Cell Reports 43, 114436, July 23, 2024 7
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3 as hypomorphic, and 4 as LoF-like, providing new evidence in

support of reclassifying these VUSs (Figure 4J).

Using transcriptome-based labels for variant effect
prediction
COSMIC, MLL, and ClinVar datasets encompass missense mu-

tations that are not in our library, either different amino acid sub-

stitutions of included positions or substitutions of others. We

reasoned that our library could serve as training data to predict

their functional effects. The 79 perturbation variants in our library

(41 WT-like, 24 LoF-like, 14 hypomorphic) were divided into a

training set and a test set at randomwith balanced ratios of func-

tional vs. WT-like. We annotated each variant with 85 features

describing substitution effects on amino acid biophysical prop-

erties (SNVBox92) and trained a random forest classifier on the

training set to predict functional vs. WT-like variant labels

(STAR Methods). Our RUNX1-specific model scored 0.87 area

under the receiver operating characteristic curve (AUROC) and

0.88 area under the precision recall curve (AUPR) on the test

set, outperforming sequence-based variant effect and protein

stability predictions from VEST and FoldX (Figure 4K).

Encouraged by these results, we trained a classifier on all

79 perturbation variants and evaluated performance on the

positive and negative control missense variants in our library

(n = 12), obtaining 0.81 AUROC and 0.84 AUPR scores.

We then predicted transcriptomic effect labels of all the remain-

ing possible missense mutations of RUNX1 (n = 2,582)

(Table S8), resulting in 302 functional and 355 WT-like predic-

tions for Runt domain mutations not contained in our library.

For mutations observed in cancer (Figure S9A), predictions

were biased toward being functional (COSMIC: 101 functional

vs. 52 WT-like, OR = 2.92, p = 1.9e�8; MLL: 109 functional

vs. 36 WT-like, OR = 4.99, p = 1e�15); whereas gnomAD data-

base mutations were biased toward WT-like (27 functional vs.

50 WT-like, OR = 0.59, p = 0.051; Figure S9B). We further as-

sessed the performance of our classifier on a high-confidence

subset of 110 pathogenic vs. 74 neutral Runt domain variants

assembled from COSMIC, MLL, ClinVar, and gnomAD data-

bases (STAR Methods), achieving 0.79 AUROC and 0.82

AUPR scores (Figure S9C). For 21 unique germline variants

with benign/pathogenic clinical annotations (ClinVar), we

achieved 0.81 accuracy (only 4 false negatives), giving confi-
Figure 4. Mapping oncogenic variants onto the RUNX1 regulatory land

(A) Sequence-based phenotypic profiling of 79 RUNX1 perturbation variants. To

scaled).

(B, C, andG) Structure-based phenotypic profiling of RUNX1 perturbation variants

domain (gray) and CBFB (blue), interacting with DNA (yellow and pink strands) (PD

and (C) variants targeting DNA (red) or CBFB interaction (purple), or (G) observed

mutations are annotated.

(D and E) ORs with 95% confidence intervals. Enrichment of WT-like vs. functio

residues, or (E) in cancer vs. non-cancer genome databases. OR >1 indicates

**p < 0.001).

(F) T2WT scores vs. mutation frequency (log2 scaled) of library variants present in

(H) Percent distribution of variant phenotypic annotations across tumors observed

4 most frequent tissue types are shown.

(I) Frequency of mutations in MLL overlapping variants in the RUNX1 library (log2

(J) T2WT scores of germline variants, grouped according to clinical significance a

(K) Performance of ‘‘RUNX1-model’’ classifier vs. VEST and FoldX, summarized
dence to our model’s predictions on 103 remaining VUSs (45

functional vs. 58 WT-like; Figure S9D). We used a conservative

score threshold (0.5) to assign functional vs. WT-like predic-

tions, which provided reasonable separation in both cancer

and germline cases, but relaxing the threshold within the 0.4–

0.5 range could increase accuracy (Figures S9D and S9E).

Hypomorphic variant impact on the RUNX1 regulon
To validate hypomorphic effect variants and investigate their

impact on the RUNX1 regulon, we performed bulk RNA

sequencing (RNA-seq) and assay for transposase-accessible

chromatin with sequencing (ATAC-seq). We selected 12 variants

to study, includingWT and LoF controls, 9 hypomorphic variants

that showed largest deviations from both controls, and an LoF-

like variant (V159D) predicted to target RUNX1-CBFB binding,

to further investigate effects of its interruption (Figure 5A; Ta-

ble 1). Bulk screens were performed for each variant separately

in iRUNX1-KD K562 cells grown in dox to induce repression of

endogenous RUNX1 (dox condition), and hygromycin to select

for transduced cells. Each variant contained 3 biological repli-

cates with more than 1 million cells. At day 7 post-transduction,

cells were split into two groups: �1 million and 100,000 cells to

be sequenced to a depth of 30 or 75 million reads per sample

for bulk RNA- and ATAC-seq (Figure 1D).

After alignment, QC filtering, normalization, removal of repli-

cate-specific batch effects, and averaging across replicates,

we obtained an 18,646 genes by samples expression matrix

and an 82,870 peaks by samples count matrix (STAR Methods).

Principal-component analysis (PCA) of variants on bulk gene

expression and ATAC-seq peaks showed similar trends, with

PC1s reflecting progression of phenotypic effects, from WT-

like to hypomorphic-I, -II, -III, to LoF-like, while PC2s distin-

guished hypomorphic variants from both WT and LoF

(Figures 5B and 5C). Unsupervised hierarchical clustering of var-

iants on bulk gene expression (Figure 5D) reproduced the earlier

single-cell (sc)RNA-seq-based clustering (Figure 2A), supporting

the idea that single-cell transcriptomic analysis can reliably iden-

tify hypomorphic variants. Unsupervised hierarchical clustering

of variants on ATAC-seq peaks produced a similar ordering (Fig-

ure 5E), suggesting that this peak set contains information rele-

vant to variant-specific expression effects. PC3–5 captured

more subtle distinctions of hypomorphic variants in both cases
scape

p: variant T2WT scores; bottom: mutation frequency in cancer (COSMIC) (log2

. The 3D crystal structure of transcription factor CBF, consisting of RUNX1Runt

B: 1h9d). Amino acid residues corresponding to (B) all 79 perturbation variants

in cancer (COSMIC), colored by phenotypic designations. The 4 most frequent

nal (LoF-like or hypomorphic) impact variants (D) for DNA- or CBFB-binding

enrichment for functional variants, while OR <1 means depletion (*p < 0.05,

cancer (COSMIC).

in different primary tissues. Sample size for each tissue is displayed on top. The

scaled).

nd colored by variant phenotypic annotations.

by the AUROC and AUPR scores.
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Figure 5. Bulk RNA-seq, ATAC-seq, and western blot analysis of 12 validation variants

(A) Overview of validation variants: T2WT and fitness scores (from scRNA-seq analysis), and mutation frequency in cancer (COSMIC).

(B and C) PCA of variants, in bulk (B) RNA-seq (using top 2,000 variable genes of scRNA-seq analysis) or (C) ATAC-seq using top 500 variable peaks. Gene

expression and DNA accessibility are averaged across replicates.

(D and E) Unsupervised hierarchical clustering of variants (columns) and (D) genes (rows) in bulk RNA, or (E) peaks (rows) in ATAC-seq. Gene expression and DNA

accessibility are averaged across replicates and mean centered. Leaves of variant dendrograms are ordered by increasing T2WT scores.

(legend continued on next page)
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Table 1. Validation variants selected for bulk RNA-seq andATAC-

seq

Variant Class Phenotype Tumors, n

L62P perturbation hypomorphic-2 0

N82I perturbation hypomorphic-1 0

G95R perturbation hypomorphic-2 1

V97D perturbation hypomorphic-2 0

G100V perturbation hypomorphic-2 1

R118G perturbation hypomorphic-3 3

V137D perturbation hypomorphic-2 0

P156R perturbation hypomorphic-1 0

V159D perturbation LoF-like 1

I166S positive hypomorphic-2 0

LoF LoF LoF-like 0

WT WT WT-like 0

Variant classes, phenotypic designations, and frequency in human tu-

mors (COSMIC or MLL).

Article
ll

OPEN ACCESS
(Figures 5F and 5G). Analyzing replicates separately yielded

similar results (Figure S10).

Variant protein expression was verified by western blot (Fig-

ure 5H), which revealed that LoF-like variant V159D resulted in

protein loss, possibly due to unstable protein, while hypomorphic

variants showed variable protein levels ranging from1.6–3.5 times

the endogenousRUNX1 expression (represented by theGFP/LoF

control) (Figure 5I). Variant RNA expression showed little variation

between hypomorphic variants and did not correlate with protein

expression (r = 0.13, p = 0.69; Figure 5J), or T2WT scores (r = 0.26,

p = 0.41; Figure 5K). When WT and LoF-like controls were

included, T2WT scores negatively correlated with variant protein

expression (Figure 5L), but showed no correlation for hypomor-

phic variants only (r = 0.13, p = 0.74). Thus, hypomorphic variant

effects are not explained solely by variation in variant RUNX1

levels, supporting that functional consequences are likely due to

the altered regulation of RUNX1 target genes.

To investigate whether hypomorphic variants altered DNA

accessibility at regulatory elements with RUNX1-binding motifs

near differentially expressed genes, we studied 202 and 89

genes that were significantly up- or downregulated, respectively,

in at least 1 hypomorphic variant relative to both WT and LoF

controls (false discovery rate < 0.05; STAR Methods). Of these,

63 and 27 (Figures 6A and 6B), respectively, had ATAC peaks

in their promoter regions ([�1 kb, +100 bp] of transcription start

sites) with RUNX1-binding motifs, suggesting direct regulation

by RUNX1. Analyzing these genes for functional enrichment (Ta-

ble S9) suggested hypomorphic variants may upregulate IL-10

signaling and PERK-regulated gene expression (Figure 6C) but

downregulate fibroblast growth factor receptor 1 (FGFR1) and
(F and G) Top 5 PCs of variants based on mean (F) gene expression or (G) DNA

(H) Western blot quantifying RUNX1 protein levels in K562 cells transduced with

endogenous RUNX1 was not knocked down; therefore, the GFP/LoF construct r

(I) Variant protein expression normalized to b-actin control and to endogenous R

(J) Variant distribution of normalized RUNX1 RNA vs. protein expression (Pearso

(K and L) Variant distribution of T2WT scores vs. normalized RUNX1 (K) RNA (Pears
IGF1R-regulated signaling (Figure 6D). To further evaluate

specific genes, we visualized RNA andATACprofiles of cells car-

rying hypomorphic variants relative to cells with WT and LoF

controls. As an example of a gene on a continuum from WT to

LoF, PTPN22 shows an intermediate effect of gene expression

for the hypomorphic cancer variant G100V (Figure 6E). In

contrast, CXCL2, involved in IL-10 signaling, and FGFR1, main

driver of FGFR1 signaling, demonstrated potential gain-of-func-

tion or LoF activity relative to both WT and LoF controls

(Figures 6F and 6G). RUNX1 mutations are reportedly more

frequent in the context of FGFR1 translocations, which have

been linked to more aggressive disease.93 For FGFR1, we

observed multiple ATAC peaks in the hypomorphic case not

observed inWT or LoF, possibly suggesting effects of the variant

on targeting RUNX1 to sites with inhibitory activity on gene

expression.

Several additional differentially up- or downregulated genes

specific to hypomorphic variants had RUNX1 motifs in nearby

enhancers (Figures S11A and S11B). Some of them, including

STAT3 and MAPKBP1, had nearby ATAC peaks with RUNX1

motifs both at their promoter and a nearby enhancer, making it

difficult to discern which element contributed to the altered

expression. Upregulated genes again showed enrichment for

IL-10 signaling, but also in NGF-stimulated transcription and

NTRK1-regulated signaling, while downregulated genes were

enriched in NFAT activation and BCR signaling (Figures S11C

and S11D; Table S10). Available chromatin conformation cap-

ture data for K562 cells supported chromatin looping between

enhancers containing RUNX1 motifs and up- or downregulated

genes. For example, we observed loops linking enhancers to

the increased expression of CD24 for V137D, and to decreased

expression of RPP25 for cancer variant R118G, relative to both

WT and LoF controls (Figures S11E and S11F). In both cases,

ATAC profiling of the hypomorphic variant suggested involve-

ment of enhancers with RUNX1 motifs, whereas ATAC peaks

were not observed for WT or LoF, illustrating that hypomorphic

variants can perturb both transcription enhancing and inhibitory

functions of RUNX1 on gene regulation. However, it is important

to note that secondary effects from downstream RUNX1 regulon

genesmay also play amechanistic role in governing this differen-

tial regulation.

DISCUSSION

While evidence shows that different mutations affecting

the same cancer gene can lead to differences in disease

severity6,7,94 or drug sensitivity,5,95,96 the potential for pleiotropy

to drive heterogeneous tumor cell phenotypes remains poorly

understood. We used information about physical contacts be-

tween proteins to guide the design of a library of amino acid sub-

stitutions. We selected RUNX1 for its well-studied role in cancer
accessibility across replicates. Rows are Z scored.

a validation variant (columns), with b-actin acting as a loading control. Here,

epresents endogenous RUNX1 expression.

UNX1 levels captured by the GFP/LoF construct (dashed line).

n’s r = 0.13, p = 0.69).

on’s r = 0.26, p = 0.41), or (L) protein expression (Pearson’s r = -0.62, p = 0.032).
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Figure 6. Regulatory consequences of hypomorphic RUNX1 variants

(A and B) Hierarchical clustering of variants (columns) in bulk RNA-seq for genes (rows) with ATAC peaks and RUNX1 motifs in their promoters that are

(A) upregulated (n = 63) or (B) downregulated (n = 27) in at least 1 hypomorphic variant against both WT and LoF controls. Gene expression is averaged across

replicates and Z scored.

(C and D) Overrepresentation of Reactome pathways for genes in (A) and (B), respectively. Top 10 pathways, ordered by p values, are displayed.

(E–G) RNA-seq and ATAC-seq tracks of 3 example genes demonstrating distinct hypomorphic effects: (E) PTPN22 shows partial LoF, while (F) CXCL2 and (G)

FGFR1 display gain of function or LoF against both WT and LoF. Tracks are displayed for WT and LoF controls along with the hypomorphic G100V variant. ATAC

peaks are annotated with ChromHMM states, with asterisks indicating RUNX motifs. Gene exons and UTRs are represented with blue and gray bands.
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and as a master regulator of hematopoiesis, reasoning that mu-

tations here could produce large detectable differences in gene

expression. We designed mutations based on in silico prediction

of their potential to disrupt RUNX1 interactions with co-factors

and profiled their transcriptional consequences at the single-

cell level with SEUSS, which revealed three functional groups.
12 Cell Reports 43, 114436, July 23, 2024
Most mutations had effects similar to LoF or WT, except for 15

that generated transcriptional profiles different from both ex-

tremes (hypomorphic). Comparison with other experimental

RUNX1 mutation studies showed that transcriptome-based pro-

files recapitulate differences detected through affinity-based

methods and alanine-scanning mutagenesis.
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This study makes two updates to our original SEUSS vector

design to improve signal in screens: (1) to eliminate issues

with barcode shuffling, the variant and its barcode are posi-

tioned in direct proximity; and (2) to ensureminimal modification

to the ORF, variants are positioned downstream of the 2A pep-

tide so that only a proline gets appended to the protein

sequence N terminus. Simultaneous CRISPRi knockdown of

endogenous RUNX1 further boosted effect sizes. Notably, the

differences in transcriptional profiles of hypomorphic variants

at the single-cell level reproduced robustly in bulk RNA, sup-

porting SEUSS as a viable strategy for investigating the rela-

tively subtle differences in gene expression that we observed

for missense variants.

The role of RUNX1 as an oncogene vs. tumor suppressor is still

not entirely clear and may depend on the type of malignancy, as

well as other mutations present. In humans and in vivo model

systems, loss of RUNX1 leads to increased susceptibility to

AML; point mutations are associated with shorter time to pro-

gression from MDS to AML and worse prognosis in AML and

CML.97,98 In contrast, for RUNX1 translocations, a survival de-

pendency on WT RUNX1 has been reported.99

In this single-cell experiment with K562 background, themajor-

ity of mutations resulted in WT-like effects, although initially pre-

dicted to be functional by in silico pathogenicity prediction,

emphasizing the value of this transcriptomic variant assay. LoF

mutations, especially those targeting DNA binding, displayed

higher fitness with larger cell counts, suggesting that RUNX1

acts as a tumor suppressor in this setting of CML with blast crisis,

and its loss provides a selective growth advantage, although it is

important tonote thatK562cells representdisease thatdeveloped

onaWTRUNX1background.Notably, the five constructs carrying

multiple mutations generated evenmore extreme effects than the

LoF control that replaced RUNX1 with GFP. Furthermore, hypo-

morphic variants tended to perturb protein interactions vs. DNA,

consistent with reports that RUNX family mutations at DNA-con-

tact residues severely impair function, resulting in hematopoietic

disease. In contrast, those interrupting CBFB binding generate

hypomorphic alleles,84 resulting in a skeletal disorder, cleidocra-

nial dysplasia,85 suggesting that our transcriptomic profiling

shows sensitivity to distinguish pleiotropic effects.

Hypomorphic variants showed subtle transcriptomic differ-

ences with LoF variants, which was confirmed by bulk RNA-

seq. Although small, these differences affected important

signaling pathways (NGF-stimulated transcription, IL-10

signaling, PERK activity) and cancer genes (CBFA2T3, ETV4,

FGFR1, GLI1, SGK1, and STAT3). Cells harboring hypomorphic

variants downregulated a transcriptional program associated

with neuronal plasticity while overexpressing genes associated

with the response to NGF. Previous studies implicate neurotro-

phic signaling as a promoter of malignant cell growth and sur-

vival across a variety of tumor types.100 Hypomorphic variants

displayed lower expression of FGFR1, perhaps indicating a

different pattern of reliance on growth factors with links to

neuronal plasticity.101 Certain immune functions were also

altered; IL-10 signaling molecules CXCL2 and CXCL8, impli-

cated in neutrophil recruitment,102 were higher in the hypomor-

phic case, whereas NFATC1, a mediator of T cell activity,

was downregulated. Physiological implications of these small
differences in tumor microenvironment are unclear, although

increased neutrophil-to-lymphocyte ratio has been associated

with poor prognosis.103

A number of mutations in our library were recurrently observed

across multiple tumors, a phenomenon usually associated with

oncogenes1; however, the most recurrent events still clustered

with the LoF control. Several hypomorphic variants were also

seen in multiple tumors, although at a lower level of recurrence.

In single-cell plots, individual mutations were difficult to distin-

guish without first mapping to densities, and even then, some

cells coincided with WT or LoF regions. Further investigation is

needed to understand whether this reflects stochastic differ-

ences in construct expression or knockdown of endogenous

RUNX1, cell-to-cell differences in read coverage, or bona fide

variable penetrance of the variant effect on the phenotype of in-

dividual cells.

Limitations of the study
This study was performed in K562 CML cells, which express WT

RUNX1 and have been extensively characterized by the

ENCODE project. Although altered RUNX1 is most commonly

associated with AML, there are reports of frequent RUNX1muta-

tions in blast crisis CML,104,105 and we showed that functional

variants in K562 are significantly overrepresented in AML (MLL

cohort). Future studies in additional cell lines are needed to

determine how well the effects generalize to other leukemias or

non-hematopoietic tumor types. Our screen uses overexpres-

sion constructs to introduce single-nucleotide mutations, pro-

ducing RUNX1 protein levels 1.6–3.5 times higher than endoge-

nous levels. Other approaches include base editing,106,107 which

generates specific mutations at the endogenous locus that

would more closely recapitulate endogenous levels, but is sub-

ject to other limitations, including incomplete editing, that not

all sites in the genome can be targeted, and that not all base

pair changes can be generated. In addition, we focused only

on the Runt domain, whereas other domains are also important

for RUNX1 cofactor interactions. Thus, we may not have fully

captured the space of possible phenotypes that can be pro-

duced by single amino acid substitutions in RUNX1. Further-

more, our epigenetic profiling was limited to DNA accessibility,

whereas chromatin immunoprecipitation sequencing would

more directly reveal mutation-associated changes to RUNX1

localization. Additionally, direct assays of protein binding could

further confirm that hypomorphic variant impact is caused by

altered targeting of RUNX1 to DNA sites, rather than protein sta-

bility loss, as suggested by the lack of correlation between T2

scores and protein expression. These questions will be the

topics of future studies to better understand the role that Per-

turb-seq can play in providing exploitable mechanistic insights

in cancer.
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Antibodies

RUNX1 Antibody (A-2), mouse monoclonal Santa Cruz Biotechnologies Cat#sc-365644; RRID:AB_10843207

Anti-b-Actin Antibody (AC-15), mouse monoclonal Millipore Sigma Cat#A1978; RRID:AB_476692

Anti-Mouse IgG, HRP-linked Antibody Cell Signaling Technology Cat#7076P2; RRID:AB_330924

IRDye 680RD Goat anti-Mouse IgG

Secondary Antibody

Li-Cor Bio Cat#926–68070; RRID:AB_10956588

Bacterial and virus strains

Stbl3 Thermo Fisher Cat#C737303

Chemicals, peptides, and recombinant proteins

NheI-HF New England Biolabs Cat#R3131S

SalI-HF New England Biolabs Cat#R3138S

AflII New England Biolabs Cat#R0520S

Gibson Assembly Master Mix New England Biolabs Cat#E2611S

KAPA HiFi HotStart ReadyMix Roche Cat#KK2601

OneTaq 2X Master Mix New England Biolabs Cat#M0482S

AMPure XP Beads Beckman Coulter Cat#A63880

DMEM ThermoFisher Scientific Cat#10566016

.05% Trypsin-EDTA Gibco Cat#25300062

OptiMEM ThermoFisher Scientific Cat#31985062

RPMI Medium 1640 Gibco Cat#11875-093

FBS Gibco Cat#A52568

Anti-anti Gibco Cat#15240-062

Lipofectamine 2000 ThermoFisher Scientific Cat#11668030

Doxycycline hyclate Sigma Cat#D5207

Hygromycin Invitrogen Cat#10687010

Puromycin Gibco Cat#A11138-03

Polybrene Millipore-Sigma Cat#TR-1003-G

PBS, pH 7.4 Gibco Cat#10010023

Tn5 Illumina Cat#20034198

RIPA Buffer Cell Signaling Technologies Cat#9806

Pierce Protease Inhibitor Tablets ThermoFisher Scientific Cat#A32963

4X Laemmli Sample Buffer Bio-Rad Cat#1610747

4-20% Mini-PROTEAN TGX gel Bio-Rad Cat#4561094

10X Tris/Glycine/SDS Buffer Bio-Rad Cat#1610732

Nonfat Dry Milk Apex Bioresearch Cat#20-241

TBST Cell Signaling Technology Cat#9997

BSA, Fraction V, Fatty Acid-Free Millipore Sigma Cat#126575

SuperSignal West Pico Plus

Chemiluminescent Substrate

ThermoFisher Scientific Cat#34577

Carbenicillin Teknova Cat#C2199

iTaq Universal SYBR Green Master Mix Bio-Rad Cat#1725120

Critical commercial assays

Pierce BCA Protein Assay kit ThermoFisher Scientific Cat#23227

RNeasy Mini Kit Qiagen Cat#74104

DNeasy Blood and Tissue Kit Qiagen Cat#69504

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Protoscript II First Strand cDNA Synthesis Kit New England BioLabs Cat#E6560S

QIAquick PCR Purification Kit Qiagen Cat#28104

Nucleofector Solution Set SF Lonza Cat#PBC2-00675

Chromium Single Cell 30 v3 10X Genomics Cat# PN- 1000128

NEBNext Ultra RNA Library Prep Kit New England Biolabs Cat#E7530

Deposited data

Raw data: scRNA-seq This paper SRA: PRJNA1033389

Raw data: bulk RNA-seq This paper SRA: PRJNA1121326

Raw data: ATAC-seq This paper SRA: PRJNA1121327

RUNX1-CBFB-DNA structures Protein DataBank PDB: 1ljm, 1e50, 1h9d

Human reference genome NCBI

build 38, GRCh38–3.0.0

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

ATAC-seq data for K562 ENCODE ENCSR868FGK

ChromHMM states for K562 Roadmap Epigenomics Project https://egg2.wustl.edu/roadmap/web_portal/

Hi-C chromatin loop data for K562 NCBI GEO: GSM1551620

Experimental models: Cell lines

K-562 ATCC Cat#CCL-243; RRID:CVCL_0004

HEK293T ATCC Cat#CRL-3216; RRID:CVCL_0063

Oligonucleotides

RUNX1 library variants Twist Bioscience https://www.twistbioscience.com

Primers for qPCR, Sanger Sequencing, & oligopool

amplification, see Table S10

This Paper N/A

NEBNext Multiplex Oligos for Illumina New England Biolabs Cat#E7335S

Recombinant DNA

EF1a_mCherry_P2A_Hygro_Barcode (Parekh et al.)12 Addgene #120426

PB-TRE-dCas9-VPR (Chavez et al.)108 Addgene #63800

pHR-SFFV-KRAB-dCas9-P2A-mCherry (Gilbert et al.)109 Addgene #60954

pMD2.G N/A Addgene #12259

pCMV delta R8.2 N/A Addgene #12263

Software and algorithms

Code related to analyses of RUNX1 mutations This paper https://github.com/cartercompbio/

RUNX1_SEUSS; https://doi.org/

10.5281/zenodo.11580866

CellRanger 3.1.0 10X Genomics https://support.10xgenomics.com

genotyping-matrices (Parekh et al.)12 https://github.com/yanwu2014/

genotyping-matrices

MAGeCK (W. Li et al.)110 https://sourceforge.net/p/mageck/

wiki/Home/

PRISM (Baspinar et al.)60 https://cosbi.ku.edu.tr/prism/

VEST (Carter et al.)62 http://www.cravat.us/CRAVAT/

FoldX (Schymkowitz et al.)63 http://foldx.crg.es/

Seurat 4.1.0 (Macosko et al.)111 https://satijalab.org/seurat/

CoGAPS (Fertig et al.)72 http://www.bioconductor.org/packages/

release/bioc/html/CoGAPS.html

EnrichR (Kuleshov et al.)112 https://github.com/wjawaid/enrichR

STAR 2.7.1a (Dobin et al.)113 https://github.com/alexdobin/STAR

RSEM 1.3.1 N/A http://deweylab.biostat.wisc.edu/rsem/

limma (Ritchie et al.)114 http://bioinf.wehi.edu.au/limma/

(Continued on next page)
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DESeq2 (Love et al.)115 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

deepTools (Ramı́rez et al.)116 https://deeptools.readthedocs.io/en/develop/

nf-core/atacseq 1.2.2 (Ewels et al.)117 https://github.com/nf-core/atacseq

AtacWorks (Lal et al.)118 https://github.com/NVIDIA-Genomics-

Research/AtacWorks

SAMtools (H. Li et al.)119 http://htslib.org/

UCSC bigWigMerge (Kent et al.)120 http://genome.ucsc.edu/

MACS2 (Zhang et al.)121 https://pypi.org/project/MACS2/

BEDTools (Quinlan et al.)122 https://github.com/arq5x/bedtools2

featureCounts (Liao et al.)123 http://bioinf.wehi.edu.au/featureCounts/

HOMER (Heinz et al.)124 http://homer.ucsd.edu/

CoolBox (Xu et al.)125 https://github.com/GangCaoLab/CoolBox

Other

STRING v9.1 (Szklarczyk et al.)126 http://string.embl.de/

COSMIC (Tate et al.)64 http://cancer.sanger.ac.uk/

cancergenome/projects/cosmic/

MLL Munich Leukemia Laboratory https://www.mll.com

ClinVar (Landrum et al.)87 https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD 4.0.0 (Chen et al.)88 http://gnomad.broadinstitute.org/

SNVBox (Wong et al.)92 https://chasmplus.readthedocs.io/en/

latest/installation.html#snvbox-

database-mysql
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Hannah

Carter (hkcarter@health.ucsd.edu).

Materials availability
This study did not generate new unique reagents. The constructs introduced into cell lines are detailed in the key resources table.

Data and code availability
d All sequencing datasets are available in the NCBI BioProject database under accession number PRJNA1121229, specifically

scRNA-seq: PRJNA1033389, bulk RNA-seq: PRJNA1121326 and bulk ATAC-seq: PRJNA1121327.

d All original code is available under an MIT license via Github repository https://github.com/cartercompbio/RUNX1_SEUSS.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
HEK293T and K-562 cells were purchased from ATCC (ATCC #CRL-3216 & ATCC #CCL-243, respectively). HEK293T were grown in

DMEM media (ThermoFisher Scientific #10566016) supplemented with 10% FBS (Gibco #A52568) and 1% antibiotic-antimycotic

(Gibco #15240-062), and cultured at 37�C with 5% CO2. K-562 cells were grown in RPMI 1640 media (Gibco ##11875-093) supple-

mented with 10% FBS and 1% antibiotic-antimycotic and cultured at 37�C with 5% CO2.

METHOD DETAILS

RUNX1 reference
Variant residue positionswere defined based on the RUNX1B isoform of the RUNX1 gene (ENSG00000159216), corresponding to the

Q01196-1 isoform protein (453 amino acids) described as the canonical sequence in the UniProt database,61 encoded by transcript
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ENST00000344691 (7274 base pairs)127 and NM_001001890. The Runt domain is �128 amino acids long, corresponding to amino

acid positions 50–177 in the RUNX1 protein.85,128

Protein 3D structure analysis
We obtained 61 experimentally verified undirected protein interactions of RUNX1 with a confidence score higher than 0.4 from

STRING v9.1.126 Experimental 3D co-crystal protein structures for RUNX1-CBFB interaction (PDB: 1ljm, 1e50, 1h9d) were obtained

from the Protein DataBank (PDB),129 and used to predict amino acid residues of RUNX1 in direct physical contact with CBFB as

described in our previous work.130 The remaining interactions did not have co-crystal structures. Instead, we used in silico tem-

plate-based protein docking on single protein structures with PRISM60 to identify contact residues. PRISM returned predictions

for 33 RUNX1 interaction partners (Figure 1B).

Amino acid residues of RUNX1 involved in DNA binding (PDB: 1h9d) were determined using the distance between two non-

hydrogen atoms of amino acids and nucleotides, one from the protein and one from the DNA. If the distance was less than 3.5A,

we designated them as interface residues,17 which identified R80, R135, R139, R142, G143, K167, T169, V170, D171, R174,

R177 as DNA-contact residues. Amino acid residues were annotated as core, surface, or intermediate based on their relative solvent

accessible surface areas as described in our previous work.130 VMD131 was used to visualize protein 3D structures (Figures 1A, 4B,

4C, and 4G).

Selection of variants for library construction
The ORF mutation library consists of 117 elements: 83 single amino acid substitutions at protein interaction interfaces in the RUNX1

Runt domain, 1 WT construct, 1 LOF construct, 17 negative, and 10 positive control mutations, and 5 combinations of two or more

interfacemutations (Figures 1D; Table S1). Variant effect prediction scores for all possiblemissensemutations targeting each residue

were obtained from VEST62 and FoldX.63 Variant frequency in human tumors was determined from the COSMIC database64

(obtained on 11/7/2022, for transcript ENST00000344691), along with the primary tissue the tumor resides in (Figure 4H). For

each residue, the most damaging amino acid substitution possible from a single base substitution (the highest VEST or FoldX scored

mutation) was chosen to be included in the ORF mutation library, prioritizing cancer mutations where possible, to maximize the pos-

sibility of perturbing physical protein interactions. 30 of 83 mutations tested are cancer mutations.

TheWT construct consists ofWTRUNX1, while the LOF construct contains a green fluorescent protein (GFP) in place of RUNX1. 17

negative control mutations consist of 10 silent and 7 neutral (predicted based on VEST scores) mutations and are expected to be

functionally indistinguishable from the WT construct. 10 positive controls consist of 5 truncating and 5 core mutations and are ex-

pected to have similar impact to the LOF construct, by resulting in a truncated or unstable protein. 5 perturbation mutation combi-

nations consist of combinations of two, three or four perturbation mutations already in the library (Table S1).

Building of RUNX1 variant library
The gene overexpression vector was generated from a modified lentiviral vector (Addgene #120426). The vector was modified by

removing both the mCherry transgene and the hygromycin resistance enzyme gene. The hygromycin resistance enzyme gene

was then re-cloned to be immediately downstream of the EF1a promoter, followed by a P2A peptide motif and a NheI restriction

site, which was used to clone in the library elements. A 12 base pair barcode sequence was then introduced downstream of the clon-

ing site to identify variants during single-cell transcriptome sequencing (Table S11). To insert the barcode, the backbone was di-

gested with NheI (New England BioLabs), and a pool of 12 base pair long barcodes with flanking sequences compatible with the

NheI site was cloned using Gibson assembly. To clone the library elements, the expression vector was digested with NheI for 3 h

at 37�C. The linearized vector was then purified using a QIAquick PCR Purification Kit (Qiagen).

DNA fragments coding for the library elements were ordered from Twist Bioscience as a site saturation variant library in an arrayed

format as linear dsDNA. A fraction of each oligonucleotide encoding the corresponding variant was then combined, and the pool was

amplified via PCR using KAPA-Hifi (Kapa Biosystems) in 50 mL reactions containing 10 ng of pooled template and 2.5 mL of primers

RX1_01 and RX1_02 (10 mM), which include �30 bp of DNA homologous to the overexpression vector to enable Gibson assembly

cloning. A thermal cycler was used to heat the sample to 95�C for 3 min, then 16 cycles of 98�C for 20 s, 68�C for 15 s, and 72�C for

45 s, followed by a final 5 min extension at 72�C. The PCR products were then purified using Agencourt AMPure XP Beads (New

England BioLabs) beads at a 0.8:1 bead:PCR reaction ratio. See Table S12 for primer sequences.

Gibson assembly was then used to clone the pooled library elements into the overexpression vector. For the reaction, 50 ng of the

digested vector and 30 ng of the insert were mixed with 5 mL of Gibson Reaction Master Mix (New England BioLabs) in a reaction

volume of 10 mL. The Gibson reactions were incubated at 50�C for 1 h and transformed via heat shock into 50 mL of One Shot Stbl3

chemically competent cells (Invitrogen). This was done by incubating the cells with the Gibson on ice for 30 min, followed by a 45 s

heat shock at 42�C then 2 min on ice, then the addition of 250 mL of SOC media (Thermo Fisher Scientific). The cells were allowed to

recover shaking at 37�C for 1 h and were then plated on LB-carbenicillin plates. Individual bacterial colonies were picked off of the

plate and grown in LB-carbenicillin culture media shaking for 16 h at 37�C. After growth, plasmid DNA was isolated via a Qiagen

Plasmid Mini Kit. Each colony was Sanger sequenced using the primer RX1_03 to identify the variant, then by the primer RX1_04

to capture the associated barcode. One overexpression vector was created for each variant, eachwith a single unique barcode asso-

ciated. After�30%of the library was cloned, the oligonucleotides for remaining elements were re-pooled and cloned using the above
Cell Reports 43, 114436, July 23, 2024 23
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protocol, until the full library was assembled. To generate the combination mutations, the first mutation was created as described

above. Subsequent mutations were generated with overlap extension PCR with primers containing the desired mutations.

Lentivirus production
Replication deficient lentiviral particles were produced in an arrayed format for each element of the library in HEK293FT cells

(Invitrogen) via transient transfection. The HEK293FT cells were grown in DMEMmedia (Gibco) supplemented with 10% FBS (Gibco)

and 1% antibiotic-antimycotic (Thermo Fisher Scientific). One day prior to transfection, HEK293FT were plated in 12 well plates at

�35% confluency, giving one well per element of the library. The day of transfection, the culture medium was removed and replaced

with fresh DMEM plus 10% FBS. Meanwhile, the transfection mix was prepared by mixing 125 mL of Optimem reduced serummedia

(Life Technologies) with 1.5 mL of lipofectamine 2000 (Life Technologies), 125 ng of pMD2.G plasmid (Addgene #12259), 500 ng of

pCMV delta R8.2 plasmid (Addgene #12263), and 375 ng of each plasmid overexpression vector for each library element. The trans-

fection mix was incubated for 30 min, then added dropwise to the HEK293FT cells. The viral particles in the supernatant were har-

vested at 48 and 72 h post transfection, and the virus for each library element were pooled and filtered with a 0.45 mm filter (Steriflip,

Millipore), then concentrated to 1.5mL using Amicon Ultra-15 centrifugal filters with a cutoff 100,000 NMWL (Millipore). The virus was

thenmixed, aliquoted and frozen at�80�C. For the validation screen, the transfection was performed in 15 cmdishes, one for each of

the selected validation mutations, and frozen separately.

Generation of clonal inducible RUNX1 repression cell line
To repress the endogenous RUNX1, the repression vector was generated from a PiggyBac inducible dCas9 construct (Addgene

#63800). The vector was modified by removing the inducible transgene, and the sequence for the KRAB-dCas9 fusion (Addgene

#60954) followed by a P2A sequence then GFP was inserted in its place. The vector was then modified through the insertion of a

U6 promoter followed by SaII and AflII cloning sites for insertion of guide RNA sequences, then a guide RNA scaffold. Guides for

CRISPRi targeting RUNX1 were chosen from the Dolcetto library set A132 and ordered via oligonucleotide from IDT. The guides

were then cloned into the repression vector after digestion with SaII (New England BioLabs) and AflII (New England BioLabs).

K562 cells (ATCC) were cultured in RPMI 1640 media (Gibco) supplemented with 10% FBS and 1% antibiotic-antimycotic. One

day prior to electroporation, the K562 cells were maintained at a concentration of 1 million cells per mL. The day of the electropo-

ration, the cells were spun down and resuspended at a concentration of 10 million cells per mL. A total of 2 mg of DNA was added

to 100 mL of cells containing a 1:2.5 M ratio of the all-in-one RUNX1 targeting repression vector to the PiggyBac transposase vector

(Transposagen). The DNA was then electroporated into the K562 cells using the Ingenio Electroporation Kit (Mirus Bio) and a 4D Nu-

cleofector (Lonza) per the manufacturer’s protocol. The cells were recovered for 3 days, then selected for those that received inte-

gration by the addition of 1 mg/mL puromycin (Gibco) into the culture media. After 4 days of selection, the cells were split across a

96-well plate into single colonies by serial dilution. Individual colonies were then grown and assessed for their degree of inducible

RUNX1 repression.

Quantification of RUNX1 expression
To measure RUNX1 repression in the single colonies, each colony was split into two separate populations and grown in RPMI media

supplemented with 10% FBS and 1% antibiotic-antimycotic and 1 mg/mL puromycin. In one of the groups, 1 mg/mL doxycycline

(Thermo Fisher Scientific) was added to themedia to induce expression of the dCas9-KRAB transgene. Both sets of cells were main-

tained at 200,000 cells/mL over the course of 3 days after the addition of the doxycycline. On day 3 the cells were pelleted, and RNA

was extracted using a Qiagen RNeasy Mini Kit. Complementary DNA (cDNA) was synthesized from the RNA using the Protoscript II

First Strand cDNA Synthesis Kit (New England BioLabs) per the manufacturer’s protocol, then diluted 1:4 with water. To quantify

expression, qPCR was performed on the cDNA using a CFX Connect Real-Time PCR Detection System (Bio-Rad). For each sample,

two sets of primers were used; a set used to quantify RUNX1 expression (Table S12) which was compared to the housekeeping gene

GAPDH. The qPCRwas carried out in a total volume of 10 mL containing 5 mL of iTaq Universal Sybr GreenMaster Mix (Bio-Rad), 2 mL

of each primer (10 mM), and 1 mL of diluted cDNA. Thermal cycling conditions were 95�C for 2.5 min, followed by 40 cycles of 95�C for

10 s, then 60�C for 30 s. All samples were run in triplicate, and the RUNX1 expression was determined using the 2-delta delta CT

method, by comparing to the GAPDH expression. The clone with the highest degree of RUNX1 repression was selected for use in

the screen and subsequent experiments.

Sequencing screening
The K562 clonal cell line previously generated for repression of the endogenous RUNX1 protein was cultured in RPMI media supple-

mented with 10%FBS and 1% antibiotic-antimycotic. For the single-cell RNA sequencing screen, the cells were transduced with the

pooled variant library at a low MOI of�0.3 to ensure that each cell received a single construct. The viral transduction was performed

bymixing the virus with media containing 8 mg/mL polybrene (Millipore). The cells were suspended in this media at a concentration of

2 million cells per mL and spun at 1000 G for 2 h at 33�C in a 12-well plate. The cells were then pelleted and resuspended in fresh

media at a concentration of 400,000 cells/mL. 24 h after transduction, themedia was again changed, and the cells were resuspended

at 400,000 cells/mL. 48 h after transduction, the cell culture media was changed to media containing 1 mg/mL puromycin and

200 mg/mL hygromycin (Invitrogen) to select for transduced cells. At that time the cells were also split into two separate populations,
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and to one of the populations doxycycline was added daily at a concentration of 1 mg/mL to induce repression of the endogenous

RUNX1. Throughout the duration of the screen, themedia was changed each day, and the cells weremaintained at a concentration of

400,000 cells/mL. The screening was conducted with two biological replicates with greater than 1 million cells in each condition to

ensure greater than 1000-fold coverage of the library. At day 7 post transduction, a subset of the cells was processed with single-cell

RNA sequencing, with the remainder of cells being maintained until day 14 for fitness screening.

For the bulk RNA sequencing and bulk ATAC sequencing screen, the cells were transduced with the twelve validation mutations

separately. 48 h after transduction, 200 mg/mL hygromycin was used to select for transduced cells and 1 mg/mL doxycycline was

used to induce repression of the endogenous RUNX1. The screen was conducted with three biological replicates with greater

than 1 million cells in each condition. At day 7 post transduction, the cells were split into two groups, 1 million cells for bulk RNA-seq

and 100,000 cells for bulk ATAC-seq.

Single-cell RNA sequencing library preparation
scRNA-seq experiments were performed with two replicates per condition (cells with and without doxycycline). Cells were first

washed with a solution of PBS (Gibco) with 0.04% BSA (Gibco) by centrifuging the cells for 5 min at 300 G then resuspending

them in the solution. After the wash, the cells were again centrifuged and resuspended in the same solution. The cells were filtered

using a 40 mm cell strainer (VWR), and the concentration was determined using a manual hemacytometer (Thermo Fisher Scientific).

The cells were then subjected to scRNA-seq (10X genomics, chromium single cell 30 v3, with two reactions per replicate) aiming for a

target cell recovery of 10,000 cells per library. The single-cell libraries were generated according tomanufacturer’s protocols with the

following conditions: 11 PCR cycles run during cDNA amplification and 10 PCR cycles run during library generation. The libraries

were sequenced using Illumina NovaSeq platform. To genotype the cells with the variant, the barcode sequences were amplified

off of the cDNA pool generated in the scRNA-seq protocol. The barcodes were amplified via PCR using OneTaq 2X Master Mix

(New England BioLabs) in 100 mL reactions, each split across 5 PCR tubes (20 mL per tube). For each sample the reactions contained

5 mL of primers RX1_07 and the NEBNext Universal PCR Primer for Illumina (New England BioLabs) (10 mM), 6 mL of cDNA, 50 mL of

OneTaq, and the rest filled with water. A thermal cycler was used to heat the sample to 95�C for 3min, then 20 cycles of 98�C for 20 s,

65�C for 15 s, and 68�C for 45 s, followed by a final 5min extension at 68�C. The PCR products were purified using AMPure XP Beads

beads at a 0.8:1 bead:PCR reaction ratio. The second step of PCRwas performed. Subsequently, a NEBNext Ultra RNA Library Prep

Kit (New England BioLabs) was used to generate Illumina compatible sequencing libraries; this was done in a 50 mL reaction split

across 5 PCR tubes (10 mL per tube) with 20 ng of the first step purified PCR product.

Library fitness screening
A fitness screen was also performed concurrently with the single-cell RNA sequencing screen. At days 2, 7, and 14 post-transfection,

�1 million cells were collected, and their genomic DNA was isolated via a Qiagen DNeasy Blood and Tissue Kit. Barcodes corre-

sponding to each library element at each timepoint, and replicate were then amplified from the genomic DNA using OneTaq 2X Mas-

ter Mix. The sequencing libraries were amplified in 50 mL reactions, each split across 5 PCR tubes (10 mL per tube). For each sample,

the reactions contained 2.5 mL of primers A and B (10 mM), 6 mg of gDNA, 25 mL of OneTaq, with the rest filled with water. The thermal

cycler was used to heat the sample to 95�C for 3 min, then 27 cycles of 98�C for 20 s, 65�C for 15 s, and 72�C for 45 s, followed by a

final 5min extension at 72�C. The PCR products were purified using AMPure beads at 0.8:1 bead:PCR reaction ratio. NEBNext Multi-

plexed Oligos for Illumina (New England BioLabs) were then used to index the samples, and the samples were sequenced on an Il-

lumina NovaSeq platform to a depth of 2.5 million reads/sample.

Freezing for bulk RNA-seq
Cells for bulk RNA-seq were pelleted and the media aspirated. They were flash-frozen in liquid nitrogen and stored at �80�C.

Freezing for bulk ATAC-seq
Cells for bulk ATAC-seq were pelleted in a centrifuge at 1000 G for 5 min at 4�C, resuspended in cold PBS, and pelleted again. ATAC

lysis buffer was made by mixing 100 mL 1M Tris-HCl pH 7.4, 20 mL 5 M NaCl, 30 mL 1M MgCl2, 100 mL 10% IGEPAL CA-630, and

9.75 mL water. The cells were lysed with the cold ATAC lysis buffer using 100 mL buffer per 100,000 cells and centrifuged at

1000 G for 10 min at 4�C. The supernatant was removed, and the cells were flash-frozen in liquid nitrogen and stored at �80�C.

Bulk RNA sequencing library preparation
Bulk RNA-seq experiments were performed with three replicates per condition. RNA was isolated from the cells using a Qiagen

RNeasy Mini Kit according to the manufacturer’s protocols. Samples were prepared for bulk RNA-seq using the NEBNext Ultra II

RNA Library Prepwith Sample Purification Beads Kit (New England Biolabs) according tomanufacturer’s protocols with the following

conditions: 1 mg input RNA, library insert size = 200 nt. The bulk RNA-seq library was sequenced on an Illumina NovaSeq platform to a

depth of 30 million reads/sample.
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Bulk ATAC sequencing library preparation
Bulk ATAC-seq experiments were performed with three replicates per condition. Tagmentation buffer was prepared with 12.5 mL

buffer, 9.75 mL H2O, 0.25 mL digitonin, and 2.5 mL Tn5 enzyme (Illumina) per sample. Each frozen cell pellet sample was resuspended

in the tagmentation buffer and incubated at 37�C for 45 min. 1x volume 40mM EDTA was added to each sample. The tagmented

samples were purified using AMPure XP Beads at a 2:1 bead:tagmentation reaction ratio. The samples were incubated with the

beads at room temperature for 15 min, then placed on a magnetic rack to separate the beads from the supernatant, which was dis-

carded. The beads were washed twice with cold 80% ethanol, and the purified DNA was eluted from the beads using Buffer EB

(Qiagen).

The tagmented DNA was dual indexed using i5 and i7 barcodes, giving each sample a unique barcode combination. The DNA and

barcodes were added to NEB Hi Fidelity 2x PCR Mix (New England BioLabs) and amplified using the following PCR cycle: 72�C for

7 min; 98�C for 30 s; then 10 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for 1 min; and cooling back down to 4�C. Double size

selection was performed using AMPure XP Beads to select for the size of the final library. First, 0.55x volume AMPure Beads was

added to each PCR reaction and incubated at room temperature for 15 min. The samples were placed on a magnetic rack and

the supernatant transferred to new tubes, to which another 0.65x volume AMPure Beads were added (for a total of 1.2x volume

PEG). The samples were incubated at room temperature for 15 min, the supernatant was discarded, and the beads were washed

twice with cold 80% ethanol. DNA was eluted from the beads using Buffer EB and pooled together to make the final library for

sequencing. The bulk ATAC-seq library was sequenced on an Illumina NovaSeq platform to a depth of 75 million reads/sample.

Western blot
K562 cells for each condition in Figures S2B and S2Dwere spun down at 300 rcf for 5min andwashed oncewith PBS. Cells were then

resuspended in 100 mL of lysis buffer containing 1X RIPA Buffer (Cell Signaling Technology #9806), 0.1% SDS, and 1X protease in-

hibitor (Thermo Scientific #A32963). The samples were then spun at 21,000 rcf for 15 min and the soluble fraction was isolated. Pro-

tein concentration was then determined using the Pierce BCA Protein Assay kit (Thermo Fisher #23227), samples were diluted to

1 mg/mL with 4X Laemmli sample buffer (Bio-Rad #1610747) containing b-mercaptoethanol and were boiled for 10 min at 100 C.

Using the Mini Trans-Blot Cell system (Bio-Rad), 20 mL of each condition was run on a 4–20% Mini-PROTEAN TGX gel (Bio-Rad)

at 200V until completion. Protein transfer onto a PVDF membrane was performed at 70V for 120 min using the Trans-Blot system

(Bio-Rad). Membranes were blocked using 5% non-fat milk in TBST (50 mM tris base, 150 mM NaCl, 0.1% Tween 20) for 60 min.

Primary antibody incubations were performed with 5% BSA in TBST at 4�C for 16 h (RUNX1 sc-365644 Santa Cruz diluted 1:100;

b-actin A1978 Sigma diluted 1:1000). Membranes were then washed for 10 min in TBST three times. Secondary antibody incubation

was performedwith anti-mouse IgG, HRP-linked antibody (Cell Signaling Technology #7076P2) diluted in 5%non-fat milk in TBST for

1 h at room temperature followed by three 10-min washes with TBST.Membranes were then developed using SuperSignalWest Pico

Plus Chemiluminescent Substrate (Thermo Fisher #34577).

For western blot regarding Figure 5H, whole cell lysate was extracted from K562 cells transduced with RUNX1 overexpression

constructs with endogenous RUNX1 present. A total of 1 x 106 cells were spun down at 500 rcf for 5 min and washed once with

PBS. Cells were then resuspended in 100 mL of lysis buffer containing 0.05 M Tris pH 6.8, 10% glycerol, 2% SDS, 0.01 M DTT

and boiled at 100�C for 10 min. All samples were immediately placed on ice for 5 min and 20 mL of 6x sample buffer consisting of

0.05 M Tris pH 6.8, 10% glycerol, 0.10 M DTT, 2% SDS, and 0.1% bromophenol blue was added to each sample. Using the Mini

Trans-Blot Cell system (Bio-Rad), 10 mL of each sample was run on a 10% acrylamide gel (Fisher BP1408-1) at 90V for 15 min

then 115V until completion. Protein transfer onto a PVDFmembranewas performed at 280mA for 90min using the Trans-Blot system

(Bio-Rad). Membranes were blocked using 5% non-fat milk in TBST (50 mM tris base, 150 mM NaCl, 0.1% Tween 20) for 30 min.

Primary antibody incubations were performed in the same solution at 4�C for 16 h (RUNX1 sc-365644 Santa Cruz; b-actin A1978

Sigma). Membranes were then washed for 10 min in TBST three times. Secondary incubation was performed with Goat anti-mouse

IRDye680 (926–68070 Li-Cor) for 1 h at room temperature followed by three 10-min washes with TBST. Membranes were scanned

using a Li-Cor Odyssey device and analyzed using Li-Cor Image Studio Lite v 5.2.

scRNA-seq analysis
The single-cell RNA sequencing screen was performed for two conditions: one treated with doxycycline to induce repression of the

endogenous RUNX1 (named ‘dox’ condition), and the other not treated (named ‘nodox’ condition). The screening was conducted

with two biological replicates for each condition, and single-cell RNA sequencing was performed with two reactions per replicate,

making a total of eight libraries: four containing cells treated with doxycycline (dox) and four not (nodox). Sequencing was run

with a target cell recovery of 10,000 cells per library.

Sequencing reads in FASTQ format were aligned using the 10X Genomics Cell Ranger pipeline (version 3.1.0),66 to the human tran-

scriptome GRCh38 (version GRCh38–3.0.0), resulting in a gene by cell matrix of UMI counts for each library. To assign one or more

genotypes to each cell, the plasmid barcode reads were aligned to GRCh38 using BWA, and labeled with its corresponding cell and

UMI tags as described in the SEUSS pipeline12 (https://github.com/yanwu2014/genotyping-matrices).

The UMI countmatrices were processed using Seurat (version 4.1.0).111 Four dox and four nodox libraries weremerged resulting in

86,120 cells and 21,153 genes, after removal of genes expressed in fewer than 3 cells. 44,418 cells not containing a genotype bar-

code, or containingmore than one, were removed. To filter out low quality cells, we removed cells expressing fewer than 200 genes or
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more than 5000 genes. We also discarded cells that have over 20% of reads aligned to mitochondrial genes. Four perturbation var-

iants (G138V, S145I, P157R, T161I) were excluded due to low cell counts (less than 10 cells for each condition), and one negative

control was removed (G143G) due to a frameshift artifact occurred during the mutation library preparation, resulting in 40,522 cells

corresponding to 112 remaining variants (20,878 cells for dox, and 19,644 cells for nodox condition).

The count matrix was log-normalized with the default scale factor of 10,000 and the top 2000 variable genes were identified to

be used for downstream analyses. Mitochondrial or ribosomal genes were not included in the top 2000 variable gene list. We

then applied a linear transformation on the count matrix to center and scale the expression of each gene. We assigned cell cycle

scores to each cell based on its expression of G2/M and S phase markers and applied a linear model to regress out effects of

cell cycle heterogeneity. We performed linear dimensionality reduction (PCA) on the scaled data using the top 2000 variable genes

(Figure S3A).

T2 scores
In order to quantify the extent to which the expression profile of a variant deviates from the WT or LOF control variants, we used the

Hotelling’s two-sample T-squared statistic (T2), a generalization of Student’s t-statistic that is used in a two-sample multivariate

hypothesis testing.71 For this comparison, we employed the principal component space, using the top 20 principal components

(PC) to compare matrices of cells x 20 PCs for each variant. We used the hotellings2 function from the spm1d python package to

compute the test statistics, named here as T2 scores. For each variant, first we compared against cells overexpressing theWT variant

(T2 scores (vs. WT)), then we compared against cells overexpressing the LOF variant (T2 scores (vs. LOF)). Higher scores indicate a

higher deviation from the variant being compared.

Based on T2 scores, for each variant, cells with the endogenous RUNX1 repressed (dox) displayed higher deviation from theWT or

LOF control variants overall, in comparison to the cells carrying the endogenous RUNX1 (nodox) (Figures S3B and S3C). Therefore,

we decided to continue downstream analysis with dox condition cells only, corresponding to 20,878 cells with 20,389 genes. We

repeated the previously described steps for log-normalization, identification of top 2000 variable genes, scaling, cell cycle effect

regression, and PCA for these 20,878 dox cells.

Unsupervised clustering of single cells
Using the first 20 principal components, we clustered cells by first determining the nearest neighbors of each cell in the PCA

space, and then by applying a modularity optimization algorithm that iteratively groups cells together with a resolution parameter

of 0.3. We used UMAP, a non-linear dimensionality reduction technique,133 to visualize the three predicted unsupervised clusters

where similar cells are placed together in low-dimensional space (Figures 2A, 2B, 2F, S5A, and S5B). Unsupervised clusters were

confirmed not to result from cell cycle phase heterogeneity, or batch effects from merging of four dox libraries (Figures S5A

and S5B).

We applied Fisher’s exact test to evaluate the enrichment or depletion of assigned phenotypes (Figure 2G), variant classes, or cell

cycle phases (Figures S5C and S5D) in each cluster. A log odds ratio (log(OR))>0 indicates enrichment, while a log(OR) < 0 indicates

depletion.

Unsupervised clustering of variants
For each variant, we computed the mean expression (log-normalized) of each of the top 2000 variable genes across all cells corre-

sponding to the variant, resulting in an expression vector of size 2000 for each variant, representing its mean expression profile. This

generated a count matrix of 112 variants by 2000 genes. We performed PCA on the count matrix, and using the first 20 principal com-

ponents, we clustered variants by first determining the nearest neighbors of each variant in the PCA space, and then applying a

modularity optimization algorithm that iteratively groups variants together with a resolution parameter of 0.8. We used UMAP to visu-

alize the three predicted unsupervised clusters where similar variants are placed together in low-dimensional space (Figures 2C–2E).

We performed differential gene expression analysis between variants using DESeq2.115 First, differentially expressed genes be-

tween WT and LOF control variants (203 genes: FDR<0.05) were obtained. Next, each hypomorphic variant was compared against

the WT control variant separately, and genes that were differentially higher or lower expressed in at least one hypomorphic variant

against WT (141 genes: FDR<0.05) were extracted. Then, the same procedure was performed against the LOF control variant (232

genes: FDR<0.05) (Figure S6A).

Fitness analysis
To calculate fitness effects from genomic DNA reads, we first aligned reads to mutation barcodes (MagECK110) and counted the

number of reads corresponding to each mutation for each replicate at each timepoint (days 2, 7 and 14 post transduction), resulting

in a mutation by samples read counts matrix. We normalized read counts for each sample by dividing each column by its sum. We

then divided read counts of each sample by the counts at day 2 post transduction, and log2 transformed it to obtain a measurement

to represent fitness effects for each mutation and sample. We averaged fitness measurements from the two biological replicates

taken at day 14 (Figure 2I) to compute mean fitness scores (Figure 3D).
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Hierarchical variant clustering
We also hierarchically clustered variants based on Pearson correlation of their mean gene expression profiles using the top 2000

variable genes. We ordered the leaves of the resulting dendrogram by increasing T2 scores obtained from comparison to the WT

variant. To obtain discrete cluster assignments, we cut the dendrogram based on visual inspection, obtaining threemain variant clus-

ters that largely agree with WT-like, hypomorphic and LOF-like annotations (only 1 variant difference for the hypomorphic/LOF-like

separation). We further cut the dendrogram of the middle cluster, representing hypomorphic variants, into three sub-clusters: named

as hypomorphic-I, hypomorphic-II, and hypomorphic-III.

Hierarchical gene clustering
To determine genes whose expression is impacted by variants, we hierarchically clustered genes based on Manhattan distance be-

tween them using mean gene expression profiles of variants, resulting in gene groups with various expression profiles across variant

clusters.

Cell state analysis
Cell states can be described by activities of coordinated gene expression programs.134–138 We applied a non-negative matrix factor-

ization algorithm (CoGAPS72 on the expression matrix of the top 2000 variable genes of 14,217 cells harboring perturbation variants

or WT or LOF control constructs, using default parameters, which produced a gene by pattern (2000 x 7) and a pattern by cell

(7 x 14,217) matrix. Using the pattern by cell matrix, we hierarchically clustered the top 2000 variable cells into 7 clusters which

roughly corresponds to the 7 identified patterns (Figure S8A) and applied a Fisher’s exact test to evaluate the enrichment or depletion

of variant phenotypic annotations for each cluster (Figure S8B). Using the gene by pattern matrix, we assigned non-overlapping gene

markers for each pattern by distributing genes into patterns with the lowest ranking.

MLL dataset
Patient samples sent to the Munich Leukemia Laboratory (MLL) for routine diagnostic workup between August 2005 andMarch 2023

and that were diagnosed with AMLwere queried for missensemutations in RUNX1. AML diagnoses were based on cytomorphology,

immunophenotype, cytogenetics, and molecular genetics following gold standard practices. All patients gave their written informed

consent for scientific evaluations. The study was approved by the Internal Review Board and adhered to the tenets of the Declaration

of Helsinki. In total, 716 individuals from the MLL cohort carried 1 or more missense mutations in the Runt domain (amino acid po-

sitions 50–177), totaling 772 mutations. Mutations were defined with respect to the ENST00000344691 transcript of RUNX1.

Germline variants
529 unique RUNX1 missense variants were obtained from the ClinVar database87 (on 02/05/2024, for transcript NM_001001890),

along with their clinical significance annotations (‘germline classification’ column). We divided them into three categories based

on clinical significance: benign (if annotated as ‘benign’ or ‘likely benign’), pathogenic (if annotated as ‘pathogenic’ or ‘likely patho-

genic’), or VUS (if annotated as ‘uncertain significance’). Only two non-Runt domain variants had ‘conflicting classifications of path-

ogenicity’. Among 148 Runt domain variants, 24 overlap with our library, of which one is annotated as benign, 7 as pathogenic and 16

as VUS. Among the remaining 124 not present in our library, one is annotated as benign, 20 as pathogenic, and 103 as VUS.

Reference population variation
521 unique RUNX1 missense variants were obtained from the gnomAD database88 (version 4.0.0, on 02/05/2024, for transcript

ENST00000344691), 89 located in the Runt domain, of which 12 overlap with our library. 9 of the 12 also overlap with ClinVar variants.

Of the remaining 77 not present in our library, 36 are also observed in ClinVar.

Predicting variant transcriptomic effects
To generate a binary classification task, we divided the 79 RUNX1-perturbing variants in our library into a positive/functional (38 func-

tional variants: 24 LOF-like and 14 hypomorphic) vs. negative/WT-like class (41 WT-like variants). First, we obtained 85 features for

each variant from the SNVBox database92 describing substitution effects on amino acid biophysical properties, evolutionary conser-

vation of variant sites, local sequence biases, and site-specific functional annotations. Then, we performed a 60-40 random split on

the dataset, to generate a training (n = 49: 24 functional, 25 WT-like) and a test set (n = 30: 14 functional, 16 WT-like) with balanced

ratios of functional and WT-like class variants.

We trained a Random Forest classifier (n_estimators = 1000, max_features = ’sqrt’) on the training set using the scikit-learn Python

package and tested on the test set. The classifier score (between 0 and 1) represents the percentage of decision trees that classify a

mutation as functional/positive. Receiver Operator Characteristic (ROC) and Precision–Recall curves (PR) were constructed from the

classifier scores and the AUC statistic was used as a measure of classifier performance.

Next, we trained another RandomForest classifier using the entire dataset of 79 perturbation variants and predicted transcriptomic

effect labels for all remaining possible missense mutations on the RUNX1 protein (n = 2594). We used the positive (5 core mutations)

and negative (7 predicted neutral mutations) missense control variants in our RUNX1 mutation library as a validation set. We used a

0.5 score cutoff to designate predictions as functional (score>0.5) vs. WT-like (score<0.5).
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To further assess classifier performance, we created a high confidence dataset (n = 184) using Runt domain missense mutations

obtained from theCOSMIC,MLL, ClinVar and gnomADdatabases. Pathogenic class (n= 110) consists of cancermutations (COSMIC

or MLL) with frequency>1 or ClinVar mutations with ‘pathogenic’ or ‘likely pathogenic’ clinical significance annotations. Neutral class

(n = 74) consists of ClinVar mutations with ‘benign’ or ‘likely benign’ clinical significance annotations or gnomAD mutations without

‘pathogenic’ or ‘likely pathogenic’ ClinVar annotations. This dataset excludes our 79 perturbation library variants used in the classifier

training.

Selecting variants for validation with bulk sequencing
Ten hypomorphic variants showing the largest deviation from control conditions based on mean of T2WT and T2LOF scores were

selected: two hypomorphic-I (N82I, P156R), seven hypomorphic-II (L62P, L94P, G95R, V97D, G100V, V137D, I166S) and one hypo-

morphic-III (R118G). L94P was removed for being predicted to target similar protein interactions as G95R, and a LOF-like variant

(V159D) predicted to be involved in RUNX1-CBFB binding was added. WT and LOF control variants were included bringing the total

number of variants chosen for bulk sequencing to 12. Variant relative protein expression was calculated by dividing the raw expres-

sion values of RUNX1 variants to corresponding b-actin expression, used as a control, and then normalized to GPF/LOF control

variant expression (Figures 5H and 5I).

Bulk RNA-seq analysis
Sequencing reads in FASTQ format were aligned to the human transcriptome GRCh38 (Gencode v30 - GRCh38.p12) using STAR

(version 2.7.1a).113 RSEM (version 1.3.1) is used to calculate read counts for each sample and replicate (‘rsem-calculate-expression’

command), and to generate a gene by sample matrix (‘rsem_generate_data_matrix’ command) of the raw counts (‘expected_count’

column). Starting with 57,535 gene features, we removed genes with less than 10 reads in total across all the samples, along with

mitochondrial and ribosomal genes, resulting in 18,646 remaining genes.

We first normalized raw counts using the variance stabilizing transformation, which transforms counts on the log2 scale and nor-

malizes with respect to library size.115 We removed two outlier samples (replicates 2 of samples with N82I and V137D mutations)

identified based on expression profiles of top 2000 variable genes (Figure S12) and removed batch effects between replicates using

the limma package.114 For visualization purposes, we averaged gene expression across replicates for each sample. To validate

variant clustering results obtained from scRNA-seq here in the bulk setting, we used top 2000 variable genes obtained from the

scRNA-seq analysis, to perform PCA and hierarchical clustering of samples and genes based on Manhattan distance. We ordered

the leaves of the resulting sample dendrogram by increasing T2 scores obtained from the scRNA-seq analysis by comparison to the

WT variant. The same analysis was also performed using all replicates instead of their means (Figure S10).

Differential expression analysis between samples was performed with DESeq2.115 Each hypomorphic variant was compared

against the WT and LOF control variants separately, and genes that were differentially (FDR<0.05) upregulated (202 genes) or down-

regulated (89 genes) in at least one hypomorphic variant against both WT and LOF controls were extracted.

RNA expression coverage tracks (bigWig files) were generated from BAM format using deepTools bamCoverage.116

Bulk ATAC-seq analysis
Sequencing reads in FASTQ format were aligned to the human transcriptome GRCh38 and processed using the nf-core/atacseq

pipeline (version 1.2.2),117 built using Nextflow (version 22.04.0), in conjunction with Singularity. The command used is ‘nextflow

run nf-core/atacseq -r master -name "run/name" -profile "singularity" -work-dir "work/directory/path" -params-file "params/file/

path" –genome GRCh38 –narrow_peak true’, with default parameters. First, fastq files from two ATAC-seq runs were merged with

‘‘cat’’ command for each read (reads 1 and 2 for paired-end data) of each replicate (three biological replicates) of each sample (12

samples); and the pipeline was run on the merged FASTQ files. Briefly, the pipeline performs adapter trimming using Trim Galore!

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), read alignment with BWA,139 filtering with SAMtools119 (e.g.,

removal of mitochondrial reads), BEDTools,122 BamTools,140 Pysam (https://github.com/pysam-developers/pysam), and picard

(https://broadinstitute.github.io/picard/), normalized coverage track generation with BEDTools and bedGraphToBigWig,120

genome-wide enrichment with deepTools,116 peak calling with MACS2121 (narrow peaks), and quality control and statistics report-

ing with MultiQC.141

Coverage tracks were further processed with AtacWorks,118 which uses a deep learning model trained on high quality ATAC-seq

data to remove background noise. ATAC-seq data from K562 cells was obtained from the ENCODE data portal142 (experiment

ENCSR868FGK). To generate a model of noisy data, the aligned reads files from replicate 1 (ENCFF534DCE) were subsampled to

about 20million readswith SAMtools view,119 and converted to bigWig format with deepTools bamCoverage.116 The resulting bigWig

file and the bigWig for the entirety of replicate 1 (ENCFF670QXU) were provided to AtacWorks as the noisy versus clean data to train

the model.

The two highest quality replicates for each RUNX1 variant (bigWig files) were denoised using the trained AtacWorks model and

combined with UCSC bigWigMerge.120 Peaks were called on the summed files using MACS2 callpeak121 and were compared

against the ENCODE K562 ATAC data and filtered as follows.

For the wild-type sample:
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1. denoised peaks that were not observed in the undenoised peak set or in the ENCODE peak set were marked as noise and

removed,

2. peaks that were seen in the denoised bigWig track but lost during peak calling and that were also observed in either the un-

denoised or the ENCODE peak set were rescued.

For the other samples:

1. denoised peaks that were not observed in the undenoised peak set or in the ENCODE peak set were marked as noise and

removed,

2. peaks that were seen in the denoised bigWig track but lost during peak calling and that were also observed in the ENCODE

peak set were rescued as ‘‘wild type’’ peaks,

3. peaks that were seen in the denoised bigWig track but lost during peak calling and that were also observed in the undenoised

peak set were rescued as ‘‘mutation’’ peaks.

The filtered peaks were merged with BEDTools merge122 to generate the final denoised consensus peak set. On the consensus

peak set, read counts were obtained with featureCounts.123 Using HOMER,124 enriched motifs were identified (findMotifsGenome

function) and filtered for Runt domainmotifs (5motifs total) to represent RUNX1DNAbinding sites. Consensus peakswere annotated

with genomic features and Runt motifs (within 1000 base pairs) using HOMER (annotatePeaks function). They were also annotated

with ChromHMM states143 using a 25-state model for K562 cells obtained from the Roadmap Epigenomics Project (https://egg2.

wustl.edu/roadmap/web_portal/). Peaks that overlap with Hi-C loops144 were identified with BEDTools pairtobed122 using Hi-C chro-

matin loop data for K562 cells obtained from NCBI GEO (GSM1551620).

We identified peaks as promoters if located within 1 kbp downstream and 100 bp upstream of the transcription start site (TSS) of a

gene. We identified peaks as enhancers if annotated with a ChromHMM enhancer state. We filtered both promoter and enhancer

peaks that contain Runt motifs, to study genes regulated by RUNX1. Genes associated with each enhancer peak were identified us-

ing the Hi-C chromatin loops.

RNA expression and DNA accessibility coverage tracks, ChromHMM states and Hi-C loops were visualized using CoolBox.125

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed in Python or R. Correlations were evaluated using the Pearson correlation coefficient.

Odds ratios were calculatedwith Fisher’s exact test. Distributions were comparedwithMann–Whitney U test. Multiple testing correc-

tion is applied where applicable using the Benjamini-Hochberg method.

Gene set overrepresentation analysis is performed using the Gene Ontology (GO) biological process terms (2021) or Reactome

pathways (2022), with the EnrichR package.112
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SUPPLEMENTAL FIGURES 
 
 
 
 

 
Figure S1. RUNX1 interaction network. 
RUNX1 protein (green circle), its interaction partners (blue circles), and the interface residues of RUNX1 
by which it physically interacts with each partner (green triangles) are displayed. Triangle size represents 
the number of human tumors in which the residue was mutated. 
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Figure S2. Clonal K562 cell line with doxycycline-inducible CRISPRi knockdown of endogenous 
RUNX1 (iRUNX1-KD K562). 
(a) Quantification of RUNX1 RNA expression with RT-qPCR for WT K562 cells versus the clonal iRUNX1-
KD K562 cell line. Samples are divided by doxycycline treatment to induce RUNX1 repression (nodox: - or 
dox: +) and run in triplicates. RUNX1 expression is normalized to WT K562 cells with nodox condition.  
(b) Western blot showing RUNX1 protein expression for WT K562 cells versus the clonal iRUNX1-KD K562 
cell line with or without doxycycline treatment. β-actin is used as a loading control. 
(c) Quantification of RUNX1 protein expression of western blot from (b), normalized to β-actin levels and 
RUNX1 expression of WT K562 cells with nodox condition. 
(d) Western blot showing RUNX1 protein expression in the clonal iRUNX1-KD K562 cells transduced with 
a lentiviral ORF vector containing the RUNX1 control constructs: GFP as the LOF control or WT RUNX1. 
(e) Quantification of RUNX1 protein expression of western blot from (d), normalized to β-actin levels and 
RUNX1 expression of GFP/LOF control with nodox condition. 
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Figure S3. Comparison of RUNX1 variant transcriptional effects between cells treated with 
doxycycline (dox) or not (nodox). 
(a) PCA plot of single cells colored by doxycycline treatment condition, obtained using the top 2000 variable 
genes. Cell cycle effects are regressed out. 
(b-c) T2 scores of each variant for cells with dox (circle) or nodox (cross) condition, when compared against 
(b) the WT, or (c) LOF control, colored by variant classes. Higher scores indicate a higher deviation from 
the control variant being compared. Variants are ordered by increasing T2 scores for the dox condition. 
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Figure S4. Distribution of number of cells per variant. 
(a) Empirical cumulative distribution function (ECDF) of the number of cells profiled for each variant (median 
136 cells per variant). 
(b-c) Distribution of number of cells per variant for (b) each variant class, or (c) for each variant assigned 
phenotype. 
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Figure S5. Unsupervised analysis of RUNX1 variant transcriptional effects. 
(a-b) UMAP embedding of single cells carrying any of the 112 library variants, colored by (a) cell cycle 
phases, or (b) dox libraries, obtained using the top 2000 variable genes. Cell cycle effects are regressed 
out. 
(c-d) Enrichment of single cells from unsupervised clusters (from Figure 2a) for (c) cell cycle phases, and 
(d) variant classes (Figure 2b), based on log of odds ratios obtained using Fisher’s exact test. Positive 
values indicate enrichment, while negative values indicate depletion. 
(e) UMAP embedding of single cells containing perturbation variants only, colored by genotypes, obtained 
using the top 2000 variable genes. Cell cycle effects are regressed out. 
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Figure S6. Differential expression of genes in hypomorphic variants against WT and LOF controls. 
(a) Venn diagram displaying the number of genes that are differentially expressed between single cells 
harboring WT vs. LOF control variants, a hypomorphic variant vs. WT, or a hypomorphic variant vs. LOF 
control variant. 
(b) Heatmap showing mean expression profiles of 150 genes (rows) that are differentially higher or lower 
expressed in a hypomorphic variant against the WT (light blue) or LOF (pink) control variant (columns), or 
both (teal), but not between WT vs. LOF controls. Genes and variants are hierarchically clustered into seven 
and four clusters, respectively. The leaves of the variant dendrogram are ordered by increasing T2WT 
scores. Gene expression values are z-scored. 
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Figure S7. Hierarchical clustering-based gene expression programs. 
(a) Aggregated mean expression of genes for each gene program (Figure 3a) across cells for each variant. 
(b) Gene set overrepresentation analysis results for GO Biological Process terms for each gene program 
(Figure 3a) displaying top 10 terms. 
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Figure S8. Gene expression patterns identifying cell states for WT-like, hypomorphic or LOF-like 
variants. 
(a) Heatmap showing pattern weights of single cells (columns) for each of 7 patterns (rows) identified by 
non-negative matrix factorization. Cells are clustered into seven clusters which roughly correspond to the 
7 patterns. Cells are colored by phenotype of the variant they harbor. 
(b) Enrichment of single cells from hierarchical clusters from (a) for variant phenotypes based on log of 
odds ratios obtained using Fisher’s exact test. Positive values indicate enrichment, while negative values 
indicate depletion. 
(c) UMAP embedding of single cells, colored by pattern weights for each of 7 patterns. 
(d) Boxplots of pattern weights of single cells, across variant phenotypes. 
(e) Gene set overrepresentation analysis of marker genes of each of 7 patterns for Reactome pathways. 
Top 10 terms ordered by p-values are displayed. 
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Figure S9. Evaluation of predictions by classifier (from Figure 4k) for all possible RUNX1 Runt 
domain missense mutations not used in training. 
(a) Frequency of mutations in COSMIC (top panel), or MLL (bottom panel) cohorts (log2 scaled), distributed 
across amino acid sequence of RUNX1 Runt domain. Mutations are colored by transcriptomic effect labels 
predicted by our RUNX1-based model (pink: functional, blue: WT-like). 
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(b) Odds ratios (OR) and 95% confidence intervals using Fisher’s exact test. Enrichment or depletion of 
WT-like vs. functional (LOF-like or hypomorphic) impact variants in cancer versus non-cancer genome 
databases. OR>1 means enrichment for functional variants, while OR<1 means depletion (∗∗p<0.001). 
(c) Performance of classifier (from Figure 4k) on a high confidence subset of 110 pathogenic vs. 74 neutral 
Runt domain variants assembled from the COSMIC, MLL, ClinVar and gnomAD databases. Performance 
is summarized by the area under the Receiver Operating Characteristic (auROC) and Precision-Recall 
(auPR) curves. 
(d) Prediction scores by classifier for ClinVar variants, grouped according to ClinVar labels, colored by 
classifier predictions. 
(e) Prediction scores by classifier for cancer variants (COSMIC or MLL), grouped according to frequency 
in tumors. 
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Figure S10. Bulk RNA- and ATAC-seq analysis of 12 validation variants with all replicates, related 
to Figure 5. 
(a) Hierarchical clustering of samples (columns) and genes (rows) in the bulk RNA-seq setting, using top 
2000 variable genes obtained from scRNA-seq. All sample replicates are present. The leaves of the variant 
dendrogram are ordered by increasing T2WT scores. Gene expression values are z-scored. 
(b) Hierarchical clustering of samples (columns) and peaks (rows) in the bulk ATAC-seq setting, using top 
500 variable peaks. The two highest quality replicates of each sample are present. The leaves of the variant 
dendrogram are ordered by increasing T2WT scores. DNA accessibility values are z-scored. 
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Figure S11. Regulatory consequences on RUNX1 binding at enhancer regions for hypomorphic 
Runt domain variants. 
(a-b) Hierarchical clustering of variants (columns) and genes (rows) in the bulk RNA-seq setting, for genes 
that have a nearby enhancer with a RUNX1 binding site and are significantly (a) upregulated (n=30), or (b). 
downregulated (n=5), in at least one hypomorphic variant against both WT and LOF controls. Gene 
expression is averaged across replicates. Gene expression values are z-scored. 
(c-d) Overrepresentation of Reactome pathways for genes in (a) and (b), respectively. Top 10 pathways, 
ordered by p-values are displayed. 
(e) RNA-seq, ATAC-seq and Hi-C tracks illustrate an enhancer peak linked to the CD24 promoter in the 
context of the V137D variant, potentially explaining why this gene is expressed more highly in the 
hypomorphic context.  
(f) RNA-seq, ATAC-seq and Hi-C tracks link an enhancer peak 5’ to CSK to decreased expression of RPP25 
in the R118G variant, but not other genes in the region. ATAC-seq peaks are annotated with ChromHMM 
states, with asterisks (*) indicating RUNX motifs. Gene exons and UTRs are represented with blue and 
gray bands. 
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Figure S12. Hierarchical clustering of bulk RNA-seq samples before batch effect removal between 
replicates. 
Hierarchical clustering of samples (columns) and genes (rows), using top 2000 variable genes obtained 
from scRNA-seq. All sample replicates are present. Replicates 2 of samples with N82I and V137D 
mutations (N82I_2 and V137D_2), are identified as outliers and subsequently removed before batch effect 
removal between replicates and downstream analyses. The leaves of the variant dendrogram are ordered 
by increasing T2WT scores. Gene expression values are z-scored. 
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SUPPLEMENTAL TABLES 
 
Table S1. RUNX1 variant ORF overexpression library with 117 elements: corresponding variant class, 
target residue number (RUNX1B isoform) and its mapping to RUNX1C isoform, amino acid substitution, 
codon change, VEST and FoldX scores, and predicted protein interaction partners for each residue. 
 
Table S2. Library of 112 RUNX1 variants that are selected for downstream analysis after filtering and 
information specific to each variant: phenotypic annotation, T2WT and T2LOF scores and corresponding p-
values, single-cell count, fitness, VEST, and FoldX scores, residue-level information for DNA or CBFB 
binding, selected for validation experiment or not, the number of occurrences in COSMIC, MLL, gnomAD 
and ClinVar databases, ClinVar clinical/germline significance annotation. 
 
Table S3. Cluster enrichment of single cells (unsupervised clusters from Figure 2a), for each perturbation 
variant, based on log of odds ratios obtained using Fisher’s exact test. Positive values indicate enrichment, 
while negative values indicate depletion. 

VariantID AAchange Clust1-OR Clust2-OR Clust3-OR Clust1-p Clust2-p Clust3-p 
RX1_1 E61V 1.72 -1.27 -1.47 1.01E-13 3.30E-06 3.43E-05 
RX1_2 L62P -0.45 0.96 -0.96 3.38E-05 3.07E-20 3.49E-10 
RX1_3 V63E 1.65 -1.02 -1.84 2.64E-28 1.74E-09 7.75E-14 
RX1_4 R64P 2.36 -2.42 -1.42 1.63E-19 1.37E-11 7.20E-05 
RX1_5 T65I 2.48 -2.29 -1.72 1.59E-43 5.19E-23 1.47E-11 
RX1_6 D66V -1.31 0.72 0.48 7.69E-20 9.96E-09 4.99E-04 
RX1_7 S67R -2.12 0.41 1.18 6.87E-29 4.89E-03 3.94E-16 
RX1_8 P68R -2.12 0.69 0.89 1.15E-27 2.05E-06 4.74E-09 
RX1_9 N69Y 1.88 -1.28 -1.91 1.22E-15 2.26E-06 9.42E-07 
RX1_10 L71P 0.91 -0.39 -1.14 1.88E-11 9.55E-03 2.94E-08 
RX1_11 V74E 2.78 -2.34 -2.31 1.39E-26 4.93E-13 1.41E-08 
RX1_12 P76S -1.82 0.60 0.89 6.83E-49 1.20E-09 1.16E-17 
RX1_13 T77R 1.50 -1.18 -1.10 1.84E-21 3.23E-10 1.12E-06 
RX1_14 H78R -1.71 0.59 0.84 2.31E-30 1.02E-06 4.37E-11 
RX1_15 W79R -2.42 0.25 1.43 2.46E-52 2.94E-02 1.43E-35 
RX1_16 R80G -2.17 0.58 1.03 6.47E-36 6.31E-06 1.24E-14 
RX1_17 C81Y 1.97 -1.44 -1.79 8.70E-32 2.49E-13 1.11E-11 
RX1_18 N82I 0.37 0.10 -0.81 9.64E-05 3.26E-01 7.07E-10 
RX1_19 T84I 1.90 -1.38 -1.72 2.66E-31 6.62E-13 1.47E-11 
RX1_20 L85R -2.35 0.36 1.30 1.04E-47 1.98E-03 3.93E-28 
RX1_21 P86R 0.67 -0.28 -0.75 1.02E-07 4.10E-02 2.57E-05 
RX1_22 I87N 1.91 -1.76 -1.20 1.22E-12 3.65E-07 1.87E-03 
RX1_23 A88P 1.86 -2.16 -0.84 2.34E-14 2.55E-10 1.03E-02 
RX1_24 K90N 2.02 -1.76 -1.42 1.48E-23 2.78E-12 1.21E-06 
RX1_25 V92E 1.68 -1.16 -1.54 7.05E-45 2.85E-17 3.57E-17 
RX1_26 L94P -0.55 0.86 -0.53 1.73E-07 1.06E-17 6.65E-05 



 17 

RX1_27 G95R 0.01 0.50 -0.91 1.00E+0
0 2.85E-04 5.71E-06 

RX1_28 D96H 2.39 -1.84 -2.20 1.38E-33 6.69E-15 8.15E-12 
RX1_29 V97D 0.05 0.50 -1.00 5.51E-01 6.98E-09 6.48E-16 
RX1_30 P98R 1.96 -1.53 -1.61 1.61E-15 2.46E-07 2.00E-05 
RX1_31 D99Y 1.53 -1.09 -1.30 6.27E-19 5.74E-08 3.55E-07 
RX1_32 G100V -0.30 0.61 -0.49 1.26E-03 1.03E-11 3.28E-05 
RX1_33 T101I 2.14 -1.98 -1.41 2.94E-33 4.40E-18 1.36E-08 
RX1_34 L102P 2.49 -1.87 -2.46 3.45E-27 6.39E-12 2.88E-10 
RX1_35 T104I 2.26 -1.82 -1.85 1.24E-35 1.28E-16 1.80E-11 
RX1_36 V105E -1.84 0.15 1.37 5.38E-75 7.05E-02 1.16E-61 
RX1_37 M106R 1.65 -1.77 -0.76 3.44E-04 4.96E-03 3.35E-01 
RX1_38 N109Y -2.09 0.26 1.30 4.64E-16 1.94E-01 2.88E-11 
RX1_39 D110V 1.99 -1.56 -1.63 4.61E-16 1.07E-07 1.36E-05 
RX1_40 E111V 2.41 -1.99 -1.96 6.22E-17 2.83E-08 1.19E-05 
RX1_41 N112S 0.15 0.18 -0.51 5.58E-01 4.62E-01 1.25E-01 
RX1_42 Y113N 1.90 -1.44 -1.63 8.27E-07 2.53E-03 9.34E-03 
RX1_43 S114L -1.04 1.28 -0.60 2.38E-04 4.77E-07 1.02E-01 
RX1_44 A115D -1.94 0.48 1.03 1.69E-23 1.32E-03 2.02E-11 
RX1_45 E116V -2.12 0.12 1.46 9.74E-37 3.26E-01 2.19E-30 
RX1_46 L117R -1.82 0.81 0.65 1.53E-24 7.20E-09 1.93E-05 
RX1_47 R118G -0.83 1.05 -0.45 2.94E-07 3.11E-12 2.64E-02 
RX1_48 N119I -2.06 0.28 1.28 4.17E-24 7.74E-02 3.29E-16 
RX1_49 A120D 2.10 -1.47 -2.17 9.67E-23 3.80E-09 2.88E-09 
RX1_50 T121I 2.06 -1.61 -1.71 1.20E-24 2.38E-11 1.80E-08 
RX1_51 A123D 1.41 -0.78 -1.68 7.88E-07 1.74E-02 7.18E-04 
RX1_52 K125N 2.07 -1.56 -1.85 1.30E-20 4.81E-09 1.74E-07 
RX1_53 N126I 1.58 -1.23 -1.20 1.25E-19 3.36E-09 2.20E-06 
RX1_54 Q127P -1.74 0.73 0.71 4.26E-31 1.40E-09 4.20E-08 
RX1_55 V128D 1.10 -0.44 -1.63 7.88E-14 6.76E-03 3.90E-11 
RX1_56 R130T 1.45 -0.83 -1.72 2.69E-07 1.30E-02 4.88E-04 
RX1_57 N132D 1.58 -1.09 -1.45 3.90E-19 1.24E-07 1.01E-07 
RX1_58 D133G 1.09 -0.87 -0.69 1.73E-07 3.27E-04 1.69E-02 
RX1_59 R135G -2.03 0.67 0.89 2.59E-33 1.98E-07 5.28E-11 
RX1_60 V137D -0.20 0.51 -0.49 1.09E-01 2.12E-05 1.90E-03 
RX1_62 R139Q -1.83 0.45 1.02 2.82E-08 8.26E-02 1.12E-04 
RX1_63 R142S -1.30 0.27 0.93 6.54E-04 4.07E-01 6.69E-03 
RX1_64 G143R -1.54 1.02 0.25 1.82E-07 3.41E-05 3.89E-01 
RX1_66 T147I 2.03 -2.04 -1.17 3.20E-09 9.68E-06 1.49E-02 
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RX1_67 T149A 0.17 0.49 -1.38 6.49E-01 1.11E-01 1.03E-02 
RX1_68 T151I 1.44 -2.10 -0.31 1.67E-04 1.88E-04 6.81E-01 
RX1_69 F153C 1.82 -1.23 -1.86 4.94E-11 1.65E-04 6.30E-05 
RX1_70 T154I -1.64 0.65 0.72 7.36E-10 2.47E-03 1.46E-03 
RX1_71 N155I 1.72 -1.19 -1.63 5.82E-06 8.28E-03 9.34E-03 
RX1_72 P156R 0.05 0.29 -0.54 7.47E-01 7.61E-02 1.63E-02 
RX1_74 Q158R -1.59 1.18 0.09 8.72E-13 1.63E-10 6.66E-01 
RX1_75 V159D -2.76 0.25 1.47 1.18E-19 2.16E-01 1.39E-13 
RX1_77 H163D 2.46 -1.90 -2.30 5.91E-16 1.80E-07 5.16E-06 
RX1_78 R164K 1.16 -1.47 -0.26 8.32E-04 1.63E-03 6.98E-01 
RX1_79 A165D -1.26 1.25 -0.28 1.86E-07 3.83E-09 3.24E-01 

RX1_80 T169I -1.67 -0.01 1.39 4.90E-15 1.00E+0
0 1.39E-15 

RX1_81 V170M 1.23 -1.51 -0.33 2.00E-06 8.82E-06 3.86E-01 
RX1_82 P173S -1.24 0.72 0.42 1.73E-07 5.32E-04 6.80E-02 
RX1_83 R174Q -1.43 0.16 1.12 2.90E-12 3.69E-01 2.73E-10 

 
 
Table S4. Gene group (Figure 3a) scores for each phenotype cluster. 

 Group 
1 

Group 
2 

Group 
3 

Group 
4 

Group 
5 

Group 
6 

Group 
7 

Group 
8 

Group 
9 

Group 
10 

WT-like 0.221 0.032 0.000 0.176 -0.046 -0.023 -0.016 -0.016 -0.009 -0.015 
Hypo 

morphic 0.307 0.057 0.047 0.104 -0.036 -0.026 -0.025 -0.010 0.008 -0.036 

LOF-like 0.403 0.056 0.063 0.035 -0.040 -0.057 -0.010 -0.011 -0.015 -0.031 
 
 
Table S5. Gene set overrepresentation analysis results for GO Biological Process terms for each gene 
program (Figure 3a). 
 
Table S6. Gene set overrepresentation analysis results for Reactome pathways for gene markers of each 
pattern (Figure S8). 
 
Table S7. Comparison of 50 of our RUNX1 library variants with six orthogonal studies of RUNX1 missense 
mutations based on various experimental approaches: affinity-based (yeast one/two hybrid) assays, 
alanine-scanning mutagenesis, electrophoretic mobility shift assays, residue energy contribution, and 
computational analyses. Information regarding matching amino acid substitution or residue, and the 
resulting structural/functional annotation from each compared study are provided. 
 
Table S8. Classifier predictions for all possible RUNX1 missense variants, excluding the training set 
(n=2582). Variant annotations of target residue location pertaining to the Runt domain are provided, along 
with the number of occurrences in COSMIC, MLL (for Runt domain only), gnomAD, and ClinVar databases, 
and ClinVar clinical significance annotation. 
 
Table S9. Gene set overrepresentation analysis results for Reactome pathways for each gene group 
(Figure 6). 
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Table S10. Gene set overrepresentation analysis results for Reactome pathways for each gene group 
(Figure S11). 
 
Table S11. Unique 12 base pair barcode sequences identifying each of 117 RUNX1 variant ORF 
overexpression library elements. 
 
Table S12. Primers. 

Name Description Sequence 

RX1_01 Used to amplify the dsDNA oligo pool of 
library variants for cloning. 

GCCGGAGATGTCGAAGAGAATCCTGG 
ACCGATGCGTATCCCCGTAGATGC  

RX1_02 Used to amplify the dsDNA oligo pool of 
library variants for cloning. 

ACAGCCAGGAAATAGTTCTAACTTAGCT 
AGTCAGTAGGGCCTCCACACG 

RX1_03 Used in sanger sequencing to identify 
mutation in the RUNX1 gene to determine 
variant in library. 

CTGTGTAGAAGTACTCGCCGATAGTG 

RX1_04 Used in sanger sequencing to capture 
barcode associated with each variant. 

TCTTGTCTTCGTTGGGAGTG 

RX1_05 Used in qPCR to quantify RUNX1 
expression. 

CCACCTACCACAGAGCCATCAA 
  

RX1_06 Used in qPCR to quantify RUNX1 
expression. 

TTCACTGAGCCGCTCGGAAAAG 
  

RX1_07 Used to amplify the barcodes from cDNA. GACTGGAGTTCAGACGTGTGCTCTTCC 
GATCTAGAACTATTTCCTGGCTGTTACGCG 

GAPDH_F Used for qPCR of overexpressed 
peptides. 

ACAGTCAGCCGCATCTTCTT 

GAPDH_R Used for qPCR of overexpressed 
peptides. 

ACGACCAAATCCGTTGACTC 
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